noncomputable def
MeasureTheory.kolmogorovFun
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
(P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j))
(s : Set ((i : ι) → α i))
(hs : s ∈ MeasureTheory.measurableCylinders α)
:
We will show that this is an additive set function that defines a measure.
Equations
Instances For
theorem
MeasureTheory.kolmogorovFun_congr_set
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
(hs : s ∈ MeasureTheory.measurableCylinders α)
(h_eq : s = t)
:
MeasureTheory.kolmogorovFun P s hs = MeasureTheory.kolmogorovFun P t ⋯
theorem
MeasureTheory.kolmogorovFun_congr
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
{s : Set ((i : ι) → α i)}
(hs : s ∈ MeasureTheory.measurableCylinders α)
{I : Finset ι}
{S : Set ((i : { x : ι // x ∈ I }) → α ↑i)}
(hs_eq : s = MeasureTheory.cylinder I S)
(hS : MeasurableSet S)
:
MeasureTheory.kolmogorovFun P s hs = (P I) S
theorem
MeasureTheory.kolmogorovFun_empty
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
MeasureTheory.kolmogorovFun P ∅ ⋯ = 0
theorem
MeasureTheory.kolmogorovFun_union
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
(ht : t ∈ MeasureTheory.measurableCylinders α)
(hst : Disjoint s t)
:
MeasureTheory.kolmogorovFun P (s ∪ t) ⋯ = MeasureTheory.kolmogorovFun P s hs + MeasureTheory.kolmogorovFun P t ht
theorem
MeasureTheory.kolmogorovFun_additive
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(I : Finset (Set ((i : ι) → α i)))
(h_ss : ↑I ⊆ MeasureTheory.measurableCylinders α)
(h_dis : (↑I).PairwiseDisjoint id)
(h_mem : ⋃₀ ↑I ∈ MeasureTheory.measurableCylinders α)
:
MeasureTheory.kolmogorovFun P (⋃₀ ↑I) h_mem = ∑ u : { x : Set ((i : ι) → α i) // x ∈ I }, MeasureTheory.kolmogorovFun P ↑u ⋯
noncomputable def
MeasureTheory.kolContent
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
kolmogorovFun
as an additive content.
Equations
Instances For
theorem
MeasureTheory.kolContent_eq
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
:
(MeasureTheory.kolContent hP) s = MeasureTheory.kolmogorovFun P s hs
theorem
MeasureTheory.kolContent_congr
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(s : Set ((i : ι) → α i))
{I : Finset ι}
{S : Set ((i : { x : ι // x ∈ I }) → α ↑i)}
(hs_eq : s = MeasureTheory.cylinder I S)
(hS : MeasurableSet S)
:
(MeasureTheory.kolContent hP) s = (P I) S
theorem
MeasureTheory.kolContent_cylinder
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
{I : Finset ι}
{S : Set ((i : { x : ι // x ∈ I }) → α ↑i)}
(hS : MeasurableSet S)
:
(MeasureTheory.kolContent hP) (MeasureTheory.cylinder I S) = (P I) S
theorem
MeasureTheory.kolContent_mono
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
(ht : t ∈ MeasureTheory.measurableCylinders α)
(hst : s ⊆ t)
:
(MeasureTheory.kolContent hP) s ≤ (MeasureTheory.kolContent hP) t
theorem
MeasureTheory.kolContent_iUnion_le
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
⦃s : ℕ → Set ((i : ι) → α i)⦄
(hs : ∀ (n : ℕ), s n ∈ MeasureTheory.measurableCylinders α)
(n : ℕ)
:
(MeasureTheory.kolContent hP) (⋃ (i : ℕ), ⋃ (_ : i ≤ n), s i) ≤ ∑ i ∈ Finset.range (n + 1), (MeasureTheory.kolContent hP) (s i)
theorem
MeasureTheory.kolContent_diff
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
(ht : t ∈ MeasureTheory.measurableCylinders α)
:
(MeasureTheory.kolContent hP) s - (MeasureTheory.kolContent hP) t ≤ (MeasureTheory.kolContent hP) (s \ t)
theorem
MeasureTheory.kolContent_ne_top
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
[∀ (J : Finset ι), MeasureTheory.IsFiniteMeasure (P J)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
:
(MeasureTheory.kolContent hP) s ≠ ⊤
theorem
MeasureTheory.kolContent_diff_of_subset
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
{s : Set ((i : ι) → α i)}
{t : Set ((i : ι) → α i)}
[∀ (J : Finset ι), MeasureTheory.IsFiniteMeasure (P J)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hs : s ∈ MeasureTheory.measurableCylinders α)
(ht : t ∈ MeasureTheory.measurableCylinders α)
(hts : t ⊆ s)
:
(MeasureTheory.kolContent hP) (s \ t) = (MeasureTheory.kolContent hP) s - (MeasureTheory.kolContent hP) t
theorem
MeasureTheory.exists_compact
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP_inner : ∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
(J : Finset ι)
(A : Set ((i : { x : ι // x ∈ J }) → α ↑i))
(hA : MeasurableSet A)
(ε : ENNReal)
(hε : 0 < ε)
:
theorem
MeasureTheory.innerRegular_kolContent
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hP_inner : ∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
{s : Set ((i : ι) → α i)}
(hs : s ∈ MeasureTheory.measurableCylinders α)
(ε : ENNReal)
(hε : 0 < ε)
:
∃ K ∈ closedCompactCylinders α, K ⊆ s ∧ (MeasureTheory.kolContent hP) (s \ K) ≤ ε
theorem
MeasureTheory.kolContent_sigma_additive_of_innerRegular
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hP_inner : ∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(h_disj : Pairwise (Disjoint on f))
:
(MeasureTheory.kolContent hP) (⋃ (i : ℕ), f i) = ∑' (i : ℕ), (MeasureTheory.kolContent hP) (f i)
theorem
MeasureTheory.kolContent_sigma_subadditive_of_innerRegular
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
(hP_inner : ∀ (J : Finset ι),
(P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x ∈ J }) → α ↑j)) => IsCompact s ∧ IsClosed s) MeasurableSet)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
:
(MeasureTheory.kolContent hP) (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), (MeasureTheory.kolContent hP) (f i)
noncomputable def
MeasureTheory.projectiveLimitWithWeakestHypotheses
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → PseudoEMetricSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (i : ι), CompleteSpace (α i)]
(P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j))
[∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
MeasureTheory.Measure ((i : ι) → α i)
Projective limit of a projective measure family.
Equations
Instances For
theorem
MeasureTheory.kolContent_sigma_additive
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(h_disj : Pairwise (Disjoint on f))
:
(MeasureTheory.kolContent hP) (⋃ (i : ℕ), f i) = ∑' (i : ℕ), (MeasureTheory.kolContent hP) (f i)
theorem
MeasureTheory.kolContent_sigma_subadditive
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
⦃f : ℕ → Set ((i : ι) → α i)⦄
(hf : ∀ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
(hf_Union : ⋃ (i : ℕ), f i ∈ MeasureTheory.measurableCylinders α)
:
(MeasureTheory.kolContent hP) (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), (MeasureTheory.kolContent hP) (f i)
noncomputable def
MeasureTheory.projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
(P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j))
[∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
MeasureTheory.Measure ((i : ι) → α i)
Projective limit of a projective measure family.
Equations
Instances For
theorem
MeasureTheory.isProjectiveLimit_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
Kolmogorov extension theorem: for any projective measure family P
, there exists a measure
on Π i, α i
which is the projective limit of P
. That measure is given by
projectiveLimit P hP
, where hP : IsProjectiveMeasureFamily P
.
The projective limit is unique: see IsProjectiveLimit.unique
.
instance
MeasureTheory.isFiniteMeasure_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
Equations
- ⋯ = ⋯
instance
MeasureTheory.isProbabilityMeasure_projectiveLimit
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
[(i : ι) → TopologicalSpace (α i)]
[∀ (i : ι), BorelSpace (α i)]
[∀ (i : ι), PolishSpace (α i)]
[hι : Nonempty ι]
{P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x ∈ J }) → α ↑j)}
[∀ (i : Finset ι), MeasureTheory.IsProbabilityMeasure (P i)]
(hP : MeasureTheory.IsProjectiveMeasureFamily P)
:
Equations
- ⋯ = ⋯