Documentation

KolmogorovExtension4.KolmogorovExtension

noncomputable def MeasureTheory.kolmogorovFun {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)) (s : Set ((i : ι) → α i)) (hs : s MeasureTheory.measurableCylinders α) :

We will show that this is an additive set function that defines a measure.

Equations
Instances For
    theorem MeasureTheory.kolmogorovFun_congr_set {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} (hs : s MeasureTheory.measurableCylinders α) (h_eq : s = t) :
    theorem MeasureTheory.kolmogorovFun_congr {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) {s : Set ((i : ι) → α i)} (hs : s MeasureTheory.measurableCylinders α) {I : Finset ι} {S : Set ((i : { x : ι // x I }) → α i)} (hs_eq : s = MeasureTheory.cylinder I S) (hS : MeasurableSet S) :
    theorem MeasureTheory.kolmogorovFun_empty {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) :
    theorem MeasureTheory.kolmogorovFun_union {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) (ht : t MeasureTheory.measurableCylinders α) (hst : Disjoint s t) :
    theorem MeasureTheory.kolmogorovFun_additive {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (I : Finset (Set ((i : ι) → α i))) (h_ss : I MeasureTheory.measurableCylinders α) (h_dis : (↑I).PairwiseDisjoint id) (h_mem : ⋃₀ I MeasureTheory.measurableCylinders α) :
    MeasureTheory.kolmogorovFun P (⋃₀ I) h_mem = u : { x : Set ((i : ι) → α i) // x I }, MeasureTheory.kolmogorovFun P u
    noncomputable def MeasureTheory.kolContent {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) :

    kolmogorovFun as an additive content.

    Equations
    Instances For
      theorem MeasureTheory.kolContent_eq {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) :
      theorem MeasureTheory.kolContent_congr {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (s : Set ((i : ι) → α i)) {I : Finset ι} {S : Set ((i : { x : ι // x I }) → α i)} (hs_eq : s = MeasureTheory.cylinder I S) (hS : MeasurableSet S) :
      theorem MeasureTheory.kolContent_cylinder {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) {I : Finset ι} {S : Set ((i : { x : ι // x I }) → α i)} (hS : MeasurableSet S) :
      theorem MeasureTheory.kolContent_mono {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) (ht : t MeasureTheory.measurableCylinders α) (hst : s t) :
      theorem MeasureTheory.kolContent_iUnion_le {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) ⦃s : Set ((i : ι) → α i) (hs : ∀ (n : ), s n MeasureTheory.measurableCylinders α) (n : ) :
      (MeasureTheory.kolContent hP) (⋃ (i : ), ⋃ (_ : i n), s i) iFinset.range (n + 1), (MeasureTheory.kolContent hP) (s i)
      theorem MeasureTheory.kolContent_diff {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) (ht : t MeasureTheory.measurableCylinders α) :
      theorem MeasureTheory.kolContent_ne_top {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} [∀ (J : Finset ι), MeasureTheory.IsFiniteMeasure (P J)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) :
      theorem MeasureTheory.kolContent_diff_of_subset {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} {s : Set ((i : ι) → α i)} {t : Set ((i : ι) → α i)} [∀ (J : Finset ι), MeasureTheory.IsFiniteMeasure (P J)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hs : s MeasureTheory.measurableCylinders α) (ht : t MeasureTheory.measurableCylinders α) (hts : t s) :
      theorem MeasureTheory.exists_compact {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) (J : Finset ι) (A : Set ((i : { x : ι // x J }) → α i)) (hA : MeasurableSet A) (ε : ENNReal) (hε : 0 < ε) :
      ∃ (K : Set ((i : { x : ι // x J }) → α i)), IsCompact K IsClosed K K A (P J) (A \ K) ε
      theorem MeasureTheory.innerRegular_kolContent {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) {s : Set ((i : ι) → α i)} (hs : s MeasureTheory.measurableCylinders α) (ε : ENNReal) (hε : 0 < ε) :
      theorem MeasureTheory.kolContent_sigma_additive_of_innerRegular {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) ⦃f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i MeasureTheory.measurableCylinders α) (hf_Union : ⋃ (i : ), f i MeasureTheory.measurableCylinders α) (h_disj : Pairwise (Disjoint on f)) :
      (MeasureTheory.kolContent hP) (⋃ (i : ), f i) = ∑' (i : ), (MeasureTheory.kolContent hP) (f i)
      theorem MeasureTheory.kolContent_sigma_subadditive_of_innerRegular {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) (hP_inner : ∀ (J : Finset ι), (P J).InnerRegularWRT (fun (s : Set ((j : { x : ι // x J }) → α j)) => IsCompact s IsClosed s) MeasurableSet) ⦃f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i MeasureTheory.measurableCylinders α) (hf_Union : ⋃ (i : ), f i MeasureTheory.measurableCylinders α) :
      (MeasureTheory.kolContent hP) (⋃ (i : ), f i) ∑' (i : ), (MeasureTheory.kolContent hP) (f i)
      noncomputable def MeasureTheory.projectiveLimitWithWeakestHypotheses {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → PseudoEMetricSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (i : ι), CompleteSpace (α i)] (P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)) [∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) :
      MeasureTheory.Measure ((i : ι) → α i)

      Projective limit of a projective measure family.

      Equations
      Instances For
        theorem MeasureTheory.kolContent_sigma_additive {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) ⦃f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i MeasureTheory.measurableCylinders α) (hf_Union : ⋃ (i : ), f i MeasureTheory.measurableCylinders α) (h_disj : Pairwise (Disjoint on f)) :
        (MeasureTheory.kolContent hP) (⋃ (i : ), f i) = ∑' (i : ), (MeasureTheory.kolContent hP) (f i)
        theorem MeasureTheory.kolContent_sigma_subadditive {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) ⦃f : Set ((i : ι) → α i) (hf : ∀ (i : ), f i MeasureTheory.measurableCylinders α) (hf_Union : ⋃ (i : ), f i MeasureTheory.measurableCylinders α) :
        (MeasureTheory.kolContent hP) (⋃ (i : ), f i) ∑' (i : ), (MeasureTheory.kolContent hP) (f i)
        noncomputable def MeasureTheory.projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] (P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)) [∀ (i : Finset ι), MeasureTheory.IsFiniteMeasure (P i)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) :
        MeasureTheory.Measure ((i : ι) → α i)

        Projective limit of a projective measure family.

        Equations
        Instances For
          theorem MeasureTheory.isProjectiveLimit_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) :

          Kolmogorov extension theorem: for any projective measure family P, there exists a measure on Π i, α i which is the projective limit of P. That measure is given by projectiveLimit P hP, where hP : IsProjectiveMeasureFamily P. The projective limit is unique: see IsProjectiveLimit.unique.

          instance MeasureTheory.isFiniteMeasure_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [∀ (I : Finset ι), MeasureTheory.IsFiniteMeasure (P I)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) :
          Equations
          • =
          instance MeasureTheory.isProbabilityMeasure_projectiveLimit {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] [(i : ι) → TopologicalSpace (α i)] [∀ (i : ι), BorelSpace (α i)] [∀ (i : ι), PolishSpace (α i)] [hι : Nonempty ι] {P : (J : Finset ι) → MeasureTheory.Measure ((j : { x : ι // x J }) → α j)} [∀ (i : Finset ι), MeasureTheory.IsProbabilityMeasure (P i)] (hP : MeasureTheory.IsProjectiveMeasureFamily P) :
          Equations
          • =