π-systems generating MeasurableSpace.pi
#
theorem
isSetField_measurableCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
:
theorem
isSetRing_measurableCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
:
theorem
isSetSemiring_measurableCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
:
theorem
iUnion_le_mem_measurableCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{s : ℕ → Set ((i : ι) → α i)}
(hs : ∀ (n : ℕ), s n ∈ MeasureTheory.measurableCylinders α)
(n : ℕ)
:
⋃ (i : ℕ), ⋃ (_ : i ≤ n), s i ∈ MeasureTheory.measurableCylinders α
theorem
iInter_le_mem_measurableCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MeasurableSpace (α i)]
{s : ℕ → Set ((i : ι) → α i)}
(hs : ∀ (n : ℕ), s n ∈ MeasureTheory.measurableCylinders α)
(n : ℕ)
:
⋂ (i : ℕ), ⋂ (_ : i ≤ n), s i ∈ MeasureTheory.measurableCylinders α
The set of all cylinders based on closed compact sets. Note that such a set is closed, but not compact in general (for instance, the whole space is always a closed compact cylinder).
Equations
- closedCompactCylinders α = ⋃ (s : Finset ι), ⋃ (S : Set ((i : { x : ι // x ∈ s }) → α ↑i)), ⋃ (_ : IsClosed S), ⋃ (_ : IsCompact S), {MeasureTheory.cylinder s S}
Instances For
theorem
empty_mem_closedCompactCylinders
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → TopologicalSpace (α i)]
:
@[simp]
theorem
mem_closedCompactCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
(t : Set ((i : ι) → α i))
:
t ∈ closedCompactCylinders α ↔ ∃ (s : Finset ι) (S : Set ((i : { x : ι // x ∈ s }) → α ↑i)) (_ : IsClosed S) (_ : IsCompact S),
t = MeasureTheory.cylinder s S
noncomputable def
closedCompactCylinders.finset
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
:
Finset ι
Given a closed compact cylinder, choose a finset of variables such that it only depends on these variables.
Equations
- closedCompactCylinders.finset ht = ⋯.choose
Instances For
def
closedCompactCylinders.set
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
:
Set ((i : { x : ι // x ∈ closedCompactCylinders.finset ht }) → α ↑i)
Given a closed compact cylinder, choose a set depending on finitely many variables of which it is a lift.
Equations
- closedCompactCylinders.set ht = ⋯.choose
Instances For
theorem
closedCompactCylinders.isClosed
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
:
theorem
closedCompactCylinders.isCompact
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
:
theorem
closedCompactCylinders.eq_cylinder
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
:
theorem
cylinder_mem_closedCompactCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
(s : Finset ι)
(S : Set ((i : { x : ι // x ∈ s }) → α ↑i))
(hS_closed : IsClosed S)
(hS_compact : IsCompact S)
:
theorem
mem_cylinder_of_mem_closedCompactCylinders
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → TopologicalSpace (α i)]
[(i : ι) → MeasurableSpace (α i)]
[∀ (i : ι), SecondCountableTopology (α i)]
[∀ (i : ι), OpensMeasurableSpace (α i)]
{t : Set ((i : ι) → α i)}
(ht : t ∈ closedCompactCylinders α)
: