Documentation

KolmogorovExtension4.Boxes

π-systems generating MeasurableSpace.pi #

theorem iUnion_le_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s : Set ((i : ι) → α i)} (hs : ∀ (n : ), s n MeasureTheory.measurableCylinders α) (n : ) :
⋃ (i : ), ⋃ (_ : i n), s i MeasureTheory.measurableCylinders α
theorem iInter_le_mem_measurableCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] {s : Set ((i : ι) → α i)} (hs : ∀ (n : ), s n MeasureTheory.measurableCylinders α) (n : ) :
⋂ (i : ), ⋂ (_ : i n), s i MeasureTheory.measurableCylinders α
def closedCompactCylinders {ι : Type u_1} (α : ιType u_2) [(i : ι) → TopologicalSpace (α i)] :
Set (Set ((i : ι) → α i))

The set of all cylinders based on closed compact sets. Note that such a set is closed, but not compact in general (for instance, the whole space is always a closed compact cylinder).

Equations
Instances For
    theorem empty_mem_closedCompactCylinders {ι : Type u_1} (α : ιType u_2) [(i : ι) → TopologicalSpace (α i)] :
    @[simp]
    theorem mem_closedCompactCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] (t : Set ((i : ι) → α i)) :
    t closedCompactCylinders α ∃ (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) (_ : IsClosed S) (_ : IsCompact S), t = MeasureTheory.cylinder s S
    noncomputable def closedCompactCylinders.finset {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :

    Given a closed compact cylinder, choose a finset of variables such that it only depends on these variables.

    Equations
    Instances For
      def closedCompactCylinders.set {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :
      Set ((i : { x : ι // x closedCompactCylinders.finset ht }) → α i)

      Given a closed compact cylinder, choose a set depending on finitely many variables of which it is a lift.

      Equations
      Instances For
        theorem closedCompactCylinders.isClosed {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :
        theorem closedCompactCylinders.isCompact {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :
        theorem closedCompactCylinders.eq_cylinder {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :
        theorem cylinder_mem_closedCompactCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] (s : Finset ι) (S : Set ((i : { x : ι // x s }) → α i)) (hS_closed : IsClosed S) (hS_compact : IsCompact S) :
        theorem mem_cylinder_of_mem_closedCompactCylinders {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] [(i : ι) → MeasurableSpace (α i)] [∀ (i : ι), SecondCountableTopology (α i)] [∀ (i : ι), OpensMeasurableSpace (α i)] {t : Set ((i : ι) → α i)} (ht : t closedCompactCylinders α) :