Documentation

KolmogorovExtension4.Semiring

Semirings of sets #

A semi-ring of sets C is a family of sets containing , stable by intersection and such that for all s, t ∈ C, t \ s is equal to a disjoint union of finitely many sets in C.

theorem MeasureTheory.IsSetSemiring.eq_add_diffFinset_of_subset {α : Type u_1} {C : Set (Set α)} {s : Set α} {t : Set α} (hC : MeasureTheory.IsSetSemiring C) (m : Set αENNReal) (m_add : ∀ (I : Finset (Set α)), I C(↑I).PairwiseDisjoint id⋃₀ I Cm (⋃₀ I) = uI, m u) (hs : s C) (ht : t C) (hst : s t) [DecidableEq (Set α)] :
m t = m s + ihC.diffFinset ht hs, m i
noncomputable def MeasureTheory.IsSetSemiring.indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
Finset (Set α)

A finite set of sets in C such that ⋃₀ ↑(hC.indexedDiffFinset₀ J hJ n) = J.ordered n \ ⋃₀ finsetLT J n.

Equations
  • hC.indexedDiffFinset₀ J hJ n = hC.diffFinset₀
Instances For
    theorem MeasureTheory.IsSetSemiring.sUnion_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
    ⋃₀ (hC.indexedDiffFinset₀ J hJ n) = J.ordered n \ ⋃₀ (J.finsetLT n)
    theorem MeasureTheory.IsSetSemiring.indexedDiffFinset₀_subset {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
    (hC.indexedDiffFinset₀ J hJ n) C
    theorem MeasureTheory.IsSetSemiring.sUnion_indexedDiffFinset₀_subset {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
    ⋃₀ (hC.indexedDiffFinset₀ J hJ n) J.ordered n
    theorem MeasureTheory.IsSetSemiring.empty_not_mem_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
    hC.indexedDiffFinset₀ J hJ n
    theorem MeasureTheory.IsSetSemiring.subset_ordered_of_mem_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} (h : s hC.indexedDiffFinset₀ J hJ n) :
    s J.ordered n
    theorem MeasureTheory.IsSetSemiring.iUnion_sUnion_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
    ⋃ (i : Fin J.card), ⋃₀ (hC.indexedDiffFinset₀ J hJ i) = ⋃₀ J
    theorem MeasureTheory.IsSetSemiring.disjoint_sUnion_finsetLT_of_mem_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} (h : s hC.indexedDiffFinset₀ J hJ n) :
    Disjoint s (⋃₀ (J.finsetLT n))
    theorem MeasureTheory.IsSetSemiring.disjoint_ordered_of_mem_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} {m : Fin J.card} (h : s hC.indexedDiffFinset₀ J hJ n) (hnm : m < n) :
    Disjoint s (J.ordered m)
    theorem MeasureTheory.IsSetSemiring.disjoint_of_mem_indexedDiffFinset₀_of_lt {α : Type u_1} {C : Set (Set α)} {s : Set α} {t : Set α} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} {m : Fin J.card} (hnm : n < m) (hs : s hC.indexedDiffFinset₀ J hJ n) (ht : t hC.indexedDiffFinset₀ J hJ m) :
    theorem MeasureTheory.IsSetSemiring.disjoint_of_mem_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} {s : Set α} {t : Set α} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} {m : Fin J.card} (hnm : n m) (hs : s hC.indexedDiffFinset₀ J hJ n) (ht : t hC.indexedDiffFinset₀ J hJ m) :
    theorem MeasureTheory.IsSetSemiring.disjoint_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) {n : Fin J.card} {m : Fin J.card} (hnm : n m) :
    Disjoint (hC.indexedDiffFinset₀ J hJ n) (hC.indexedDiffFinset₀ J hJ m)
    theorem MeasureTheory.IsSetSemiring.pairwiseDisjoint_indexedDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
    (↑Finset.univ).PairwiseDisjoint (hC.indexedDiffFinset₀ J hJ)
    theorem MeasureTheory.IsSetSemiring.pairwiseDisjoint_indexedDiffFinset₀' {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) (n : Fin J.card) :
    (↑(hC.indexedDiffFinset₀ J hJ n)).PairwiseDisjoint id
    noncomputable def MeasureTheory.IsSetSemiring.allDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
    Finset (Set α)

    This is a finset of pairwise disjoint sets in the set semi-ring C, such that ⋃₀ hC.allDiffFinset₀ J hJ = ⋃₀ J.

    Equations
    • hC.allDiffFinset₀ J hJ = Finset.univ.disjiUnion (hC.indexedDiffFinset₀ J hJ)
    Instances For
      theorem MeasureTheory.IsSetSemiring.pairwiseDisjoint_allDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
      (↑(hC.allDiffFinset₀ J hJ)).PairwiseDisjoint id
      theorem MeasureTheory.IsSetSemiring.allDiffFinset₀_subset {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
      (hC.allDiffFinset₀ J hJ) C
      theorem MeasureTheory.IsSetSemiring.sUnion_allDiffFinset₀ {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (hJ : J C) :
      ⋃₀ (hC.allDiffFinset₀ J hJ) = ⋃₀ J
      theorem MeasureTheory.IsSetRing.iUnion_le_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetRing C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :
      ⋃ (i : ), ⋃ (_ : i n), s i C
      theorem MeasureTheory.IsSetRing.iInter_le_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetRing C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :
      ⋂ (i : ), ⋂ (_ : i n), s i C
      theorem MeasureTheory.IsSetRing.accumulate_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetRing C) {s : Set α} (hs : ∀ (i : ), s i C) (n : ) :
      structure MeasureTheory.IsSetField {α : Type u_1} (C : Set (Set α)) extends MeasureTheory.IsSetRing :

      A field of sets is a family of sets which is stable under union, difference, and contains the empty set and the whole space.

      • empty_mem : C
      • union_mem : ∀ ⦃s t : Set α⦄, s Ct Cs t C
      • diff_mem : ∀ ⦃s t : Set α⦄, s Ct Cs \ t C
      • univ_mem : Set.univ C
      Instances For
        theorem MeasureTheory.IsSetField.univ_mem {α : Type u_1} {C : Set (Set α)} (self : MeasureTheory.IsSetField C) :
        Set.univ C
        theorem MeasureTheory.IsSetField.inter_mem {α : Type u_1} {C : Set (Set α)} {s : Set α} {t : Set α} (hC : MeasureTheory.IsSetField C) (hs : s C) (ht : t C) :
        s t C
        theorem MeasureTheory.IsSetField.compl_mem {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetField C) (hs : s C) :
        s C
        theorem MeasureTheory.IsSetField.iUnion_le_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetField C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :
        ⋃ (i : ), ⋃ (_ : i n), s i C
        theorem MeasureTheory.IsSetField.iInter_le_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetField C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :
        ⋂ (i : ), ⋂ (_ : i n), s i C
        theorem MeasureTheory.IsSetField.partialSups_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetField C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :
        theorem MeasureTheory.IsSetField.disjointed_mem {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetField C) {s : Set α} (hs : ∀ (n : ), s n C) (n : ) :