Semirings of sets #
A semi-ring of sets C
is a family of sets containing ∅
, stable by intersection and such that
for all s, t ∈ C
, t \ s
is equal to a disjoint union of finitely many sets in C
.
theorem
MeasureTheory.IsSetSemiring.eq_add_diffFinset_of_subset
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
{t : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(m : Set α → ENNReal)
(m_add : ∀ (I : Finset (Set α)), ↑I ⊆ C → (↑I).PairwiseDisjoint id → ⋃₀ ↑I ∈ C → m (⋃₀ ↑I) = ∑ u ∈ I, m u)
(hs : s ∈ C)
(ht : t ∈ C)
(hst : s ⊆ t)
[DecidableEq (Set α)]
:
noncomputable def
MeasureTheory.IsSetSemiring.indexedDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
(n : Fin J.card)
:
A finite set of sets in C
such that
⋃₀ ↑(hC.indexedDiffFinset₀ J hJ n) = J.ordered n \ ⋃₀ finsetLT J n
.
Equations
- hC.indexedDiffFinset₀ J hJ n = hC.diffFinset₀ ⋯ ⋯
Instances For
theorem
MeasureTheory.IsSetSemiring.disjoint_ordered_of_mem_indexedDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
{n : Fin J.card}
{m : Fin J.card}
(h : s ∈ hC.indexedDiffFinset₀ J hJ n)
(hnm : m < n)
:
Disjoint s (J.ordered m)
theorem
MeasureTheory.IsSetSemiring.disjoint_of_mem_indexedDiffFinset₀_of_lt
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
{t : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
{n : Fin J.card}
{m : Fin J.card}
(hnm : n < m)
(hs : s ∈ hC.indexedDiffFinset₀ J hJ n)
(ht : t ∈ hC.indexedDiffFinset₀ J hJ m)
:
Disjoint s t
theorem
MeasureTheory.IsSetSemiring.disjoint_of_mem_indexedDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
{t : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
{n : Fin J.card}
{m : Fin J.card}
(hnm : n ≠ m)
(hs : s ∈ hC.indexedDiffFinset₀ J hJ n)
(ht : t ∈ hC.indexedDiffFinset₀ J hJ m)
:
Disjoint s t
theorem
MeasureTheory.IsSetSemiring.pairwiseDisjoint_indexedDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
:
(↑Finset.univ).PairwiseDisjoint (hC.indexedDiffFinset₀ J hJ)
theorem
MeasureTheory.IsSetSemiring.pairwiseDisjoint_indexedDiffFinset₀'
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
(n : Fin J.card)
:
(↑(hC.indexedDiffFinset₀ J hJ n)).PairwiseDisjoint id
noncomputable def
MeasureTheory.IsSetSemiring.allDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
:
This is a finset of pairwise disjoint sets in the set semi-ring C
, such that
⋃₀ hC.allDiffFinset₀ J hJ = ⋃₀ J
.
Equations
- hC.allDiffFinset₀ J hJ = Finset.univ.disjiUnion (hC.indexedDiffFinset₀ J hJ) ⋯
Instances For
theorem
MeasureTheory.IsSetSemiring.pairwiseDisjoint_allDiffFinset₀
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
:
(↑(hC.allDiffFinset₀ J hJ)).PairwiseDisjoint id
theorem
MeasureTheory.IsSetSemiring.allDiffFinset₀_subset
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(hJ : ↑J ⊆ C)
:
↑(hC.allDiffFinset₀ J hJ) ⊆ C
theorem
MeasureTheory.IsSetRing.accumulate_mem
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetRing C)
{s : ℕ → Set α}
(hs : ∀ (i : ℕ), s i ∈ C)
(n : ℕ)
:
Set.Accumulate s n ∈ C
structure
MeasureTheory.IsSetField
{α : Type u_1}
(C : Set (Set α))
extends
MeasureTheory.IsSetRing
:
A field of sets is a family of sets which is stable under union, difference, and contains the empty set and the whole space.
- univ_mem : Set.univ ∈ C
Instances For
theorem
MeasureTheory.IsSetField.univ_mem
{α : Type u_1}
{C : Set (Set α)}
(self : MeasureTheory.IsSetField C)
:
Set.univ ∈ C
theorem
MeasureTheory.IsSetField.compl_mem
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetField C)
(hs : s ∈ C)
:
theorem
MeasureTheory.IsSetField.toIsSetSemiring
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetField C)
:
theorem
MeasureTheory.IsSetField.partialSups_mem
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetField C)
{s : ℕ → Set α}
(hs : ∀ (n : ℕ), s n ∈ C)
(n : ℕ)
:
(partialSups s) n ∈ C
theorem
MeasureTheory.IsSetField.disjointed_mem
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetField C)
{s : ℕ → Set α}
(hs : ∀ (n : ℕ), s n ∈ C)
(n : ℕ)
:
disjointed s n ∈ C