Documentation

Mathlib.Order.Notation

Notation classes for lattice operations #

In this file we introduce typeclasses and definitions for lattice operations.

Main definitions #

Notations #

class HasCompl (α : Type u_1) :
Type u_1

Set / lattice complement

  • compl : αα

    Set / lattice complement

Instances

    Sup and Inf #

    theorem Sup.ext {α : Type u_1} {x : Sup α} {y : Sup α} (sup : Sup.sup = Sup.sup) :
    x = y
    theorem Sup.ext_iff {α : Type u_1} {x : Sup α} {y : Sup α} :
    x = y Sup.sup = Sup.sup
    theorem Inf.ext {α : Type u_1} {x : Inf α} {y : Inf α} (inf : Inf.inf = Inf.inf) :
    x = y
    theorem Inf.ext_iff {α : Type u_1} {x : Inf α} {y : Inf α} :
    x = y Inf.inf = Inf.inf

    Least upper bound (\lub notation)

    Equations

    Greatest lower bound (\glb notation)

    Equations
    class HImp (α : Type u_1) :
    Type u_1

    Syntax typeclass for Heyting implication .

    • himp : ααα

      Heyting implication

    Instances
      class HNot (α : Type u_1) :
      Type u_1

      Syntax typeclass for Heyting negation .

      The difference between HasCompl and HNot is that the former belongs to Heyting algebras, while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but compl underestimates while HNot overestimates. In boolean algebras, they are equal. See hnot_eq_compl.

      • hnot : αα

        Heyting negation

      Instances
        theorem Top.ext_iff {α : Type u_1} {x : Top α} {y : Top α} :
        x = y =
        theorem Top.ext {α : Type u_1} {x : Top α} {y : Top α} (top : = ) :
        x = y
        class Top (α : Type u_1) :
        Type u_1

        Typeclass for the (\top) notation

        • top : α

          The top (, \top) element

        Instances
        theorem Bot.ext {α : Type u_1} {x : Bot α} {y : Bot α} (bot : = ) :
        x = y
        theorem Bot.ext_iff {α : Type u_1} {x : Bot α} {y : Bot α} :
        x = y =
        class Bot (α : Type u_1) :
        Type u_1

        Typeclass for the (\bot) notation

        • bot : α

          The bot (, \bot) element

        Instances

        The top (, \top) element

        Equations

        The bot (, \bot) element

        Equations
        @[instance 100]
        instance top_nonempty (α : Type u_1) [Top α] :
        Equations
        • =
        @[instance 100]
        instance bot_nonempty (α : Type u_1) [Bot α] :
        Equations
        • =