Documentation

Mathlib.Topology.Algebra.OpenSubgroup

Open subgroups of a topological groups #

This files builds the lattice OpenSubgroup G of open subgroups in a topological group G, and its additive version OpenAddSubgroup. This lattice has a top element, the subgroup of all elements, but no bottom element in general. The trivial subgroup which is the natural candidate bottom has no reason to be open (this happens only in discrete groups).

Note that this notion is especially relevant in a non-archimedean context, for instance for p-adic groups.

Main declarations #

TODO #

structure OpenAddSubgroup (G : Type u_1) [AddGroup G] [TopologicalSpace G] extends AddSubgroup :
Type u_1

The type of open subgroups of a topological additive group.

  • carrier : Set G
  • add_mem' : ∀ {a b : G}, a (↑self).carrierb (↑self).carriera + b (↑self).carrier
  • zero_mem' : 0 (↑self).carrier
  • neg_mem' : ∀ {x : G}, x (↑self).carrier-x (↑self).carrier
  • isOpen' : IsOpen (↑self).carrier
Instances For
theorem OpenAddSubgroup.isOpen' {G : Type u_1} [AddGroup G] [TopologicalSpace G] (self : OpenAddSubgroup G) :
IsOpen (↑self).carrier
structure OpenSubgroup (G : Type u_1) [Group G] [TopologicalSpace G] extends Subgroup :
Type u_1

The type of open subgroups of a topological group.

  • carrier : Set G
  • mul_mem' : ∀ {a b : G}, a (↑self).carrierb (↑self).carriera * b (↑self).carrier
  • one_mem' : 1 (↑self).carrier
  • inv_mem' : ∀ {x : G}, x (↑self).carrierx⁻¹ (↑self).carrier
  • isOpen' : IsOpen (↑self).carrier
Instances For
theorem OpenSubgroup.isOpen' {G : Type u_1} [Group G] [TopologicalSpace G] (self : OpenSubgroup G) :
IsOpen (↑self).carrier
Equations
  • OpenAddSubgroup.hasCoeAddSubgroup = { coe := OpenAddSubgroup.toAddSubgroup }
Equations
  • OpenSubgroup.hasCoeSubgroup = { coe := OpenSubgroup.toSubgroup }
theorem OpenAddSubgroup.toAddSubgroup_injective {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
Function.Injective OpenAddSubgroup.toAddSubgroup
theorem OpenSubgroup.toSubgroup_injective {G : Type u_1} [Group G] [TopologicalSpace G] :
Function.Injective OpenSubgroup.toSubgroup
Equations
  • OpenAddSubgroup.instSetLike = { coe := fun (U : OpenAddSubgroup G) => U, coe_injective' := }
theorem OpenAddSubgroup.instSetLike.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
∀ (x x_1 : OpenAddSubgroup G), (fun (U : OpenAddSubgroup G) => U) x = (fun (U : OpenAddSubgroup G) => U) x_1x = x_1
Equations
  • OpenSubgroup.instSetLike = { coe := fun (U : OpenSubgroup G) => U, coe_injective' := }

Coercion from OpenAddSubgroup G to Opens G.

Equations
  • U = { carrier := U, is_open' := }

Coercion from OpenSubgroup G to Opens G.

Equations
  • U = { carrier := U, is_open' := }
Equations
  • OpenAddSubgroup.hasCoeOpens = { coe := OpenAddSubgroup.toOpens }
Equations
  • OpenSubgroup.hasCoeOpens = { coe := OpenSubgroup.toOpens }
@[simp]
theorem OpenAddSubgroup.coe_toOpens {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} :
U = U
@[simp]
theorem OpenSubgroup.coe_toOpens {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} :
U = U
@[simp]
theorem OpenAddSubgroup.coe_toAddSubgroup {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} :
U = U
@[simp]
theorem OpenSubgroup.coe_toSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} :
U = U
@[simp]
theorem OpenAddSubgroup.mem_toOpens {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {g : G} :
g U g U
@[simp]
theorem OpenSubgroup.mem_toOpens {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {g : G} :
g U g U
@[simp]
theorem OpenAddSubgroup.mem_toAddSubgroup {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {g : G} :
g U g U
@[simp]
theorem OpenSubgroup.mem_toSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {g : G} :
g U g U
theorem OpenAddSubgroup.ext {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} (h : ∀ (x : G), x U x V) :
U = V
theorem OpenSubgroup.ext_iff {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
U = V ∀ (x : G), x U x V
theorem OpenAddSubgroup.ext_iff {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
U = V ∀ (x : G), x U x V
theorem OpenSubgroup.ext {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} (h : ∀ (x : G), x U x V) :
U = V
Equations
  • OpenAddSubgroup.instTop = { top := { toAddSubgroup := , isOpen' := } }
Equations
  • OpenSubgroup.instTop = { top := { toSubgroup := , isOpen' := } }
@[simp]
theorem OpenAddSubgroup.mem_top {G : Type u_1} [AddGroup G] [TopologicalSpace G] (x : G) :
@[simp]
theorem OpenSubgroup.mem_top {G : Type u_1} [Group G] [TopologicalSpace G] (x : G) :
@[simp]
theorem OpenAddSubgroup.coe_top {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
= Set.univ
@[simp]
theorem OpenSubgroup.coe_top {G : Type u_1} [Group G] [TopologicalSpace G] :
= Set.univ
@[simp]
@[simp]
Equations
  • OpenAddSubgroup.instInhabited = { default := }
Equations
  • OpenSubgroup.instInhabited = { default := }

The product of two open subgroups as an open subgroup of the product group.

Equations
  • U.sum V = { toAddSubgroup := (↑U).prod V, isOpen' := }
theorem OpenAddSubgroup.sum.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] {H : Type u_2} [AddGroup H] [TopologicalSpace H] (U : OpenAddSubgroup G) (V : OpenAddSubgroup H) :
IsOpen (U ×ˢ (↑V).toAddSubmonoid)
def OpenSubgroup.prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :

The product of two open subgroups as an open subgroup of the product group.

Equations
  • U.prod V = { toSubgroup := (↑U).prod V, isOpen' := }
@[simp]
theorem OpenAddSubgroup.coe_sum {G : Type u_1} [AddGroup G] [TopologicalSpace G] {H : Type u_2} [AddGroup H] [TopologicalSpace H] (U : OpenAddSubgroup G) (V : OpenAddSubgroup H) :
(U.sum V) = U ×ˢ V
@[simp]
theorem OpenSubgroup.coe_prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :
(U.prod V) = U ×ˢ V
@[simp]
theorem OpenAddSubgroup.toAddSubgroup_sum {G : Type u_1} [AddGroup G] [TopologicalSpace G] {H : Type u_2} [AddGroup H] [TopologicalSpace H] (U : OpenAddSubgroup G) (V : OpenAddSubgroup H) :
(U.sum V) = (↑U).prod V
@[simp]
theorem OpenSubgroup.toSubgroup_prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :
(U.prod V) = (↑U).prod V
theorem OpenAddSubgroup.instInfOpenAddSubgroup.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] (U : OpenAddSubgroup G) (V : OpenAddSubgroup G) :
IsOpen (U (↑V).toAddSubmonoid)
Equations
  • OpenAddSubgroup.instInfOpenAddSubgroup = { inf := fun (U V : OpenAddSubgroup G) => { toAddSubgroup := U V, isOpen' := } }
Equations
  • OpenSubgroup.instInfOpenSubgroup = { inf := fun (U V : OpenSubgroup G) => { toSubgroup := U V, isOpen' := } }
@[simp]
theorem OpenAddSubgroup.coe_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
(U V) = U V
@[simp]
theorem OpenSubgroup.coe_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
(U V) = U V
@[simp]
theorem OpenAddSubgroup.toAddSubgroup_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
(U V) = U V
@[simp]
theorem OpenSubgroup.toSubgroup_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
(U V) = U V
@[simp]
theorem OpenAddSubgroup.toOpens_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
(U V) = U V
@[simp]
theorem OpenSubgroup.toOpens_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
(U V) = U V
@[simp]
theorem OpenAddSubgroup.mem_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} {x : G} :
x U V x U x V
@[simp]
theorem OpenSubgroup.mem_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} {x : G} :
x U V x U x V
Equations
  • OpenAddSubgroup.instPartialOrderOpenAddSubgroup = inferInstance
Equations
  • OpenSubgroup.instPartialOrderOpenSubgroup = inferInstance
Equations
Equations
Equations
theorem OpenAddSubgroup.instOrderTop.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
∀ (x : OpenAddSubgroup G), x Set.univ
Equations
@[simp]
@[simp]
theorem OpenSubgroup.toSubgroup_le {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
U V U V
theorem OpenAddSubgroup.comap.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (f : G →+ N) (hf : Continuous f) (H : OpenAddSubgroup N) :
IsOpen (f ⁻¹' H)
def OpenAddSubgroup.comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (f : G →+ N) (hf : Continuous f) (H : OpenAddSubgroup N) :

The preimage of an OpenAddSubgroup along a continuous AddMonoid homomorphism is an OpenAddSubgroup.

Equations
def OpenSubgroup.comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (f : G →* N) (hf : Continuous f) (H : OpenSubgroup N) :

The preimage of an OpenSubgroup along a continuous Monoid homomorphism is an OpenSubgroup.

Equations
@[simp]
theorem OpenAddSubgroup.coe_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (H : OpenAddSubgroup N) (f : G →+ N) (hf : Continuous f) :
(OpenAddSubgroup.comap f hf H) = f ⁻¹' H
@[simp]
theorem OpenSubgroup.coe_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (H : OpenSubgroup N) (f : G →* N) (hf : Continuous f) :
(OpenSubgroup.comap f hf H) = f ⁻¹' H
@[simp]
theorem OpenAddSubgroup.toAddSubgroup_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (H : OpenAddSubgroup N) (f : G →+ N) (hf : Continuous f) :
@[simp]
theorem OpenSubgroup.toSubgroup_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (H : OpenSubgroup N) (f : G →* N) (hf : Continuous f) :
@[simp]
theorem OpenAddSubgroup.mem_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] {H : OpenAddSubgroup N} {f : G →+ N} {hf : Continuous f} {x : G} :
@[simp]
theorem OpenSubgroup.mem_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] {H : OpenSubgroup N} {f : G →* N} {hf : Continuous f} {x : G} :
x OpenSubgroup.comap f hf H f x H
theorem OpenAddSubgroup.comap_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] {P : Type u_3} [AddGroup P] [TopologicalSpace P] (K : OpenAddSubgroup P) (f₂ : N →+ P) (hf₂ : Continuous f₂) (f₁ : G →+ N) (hf₁ : Continuous f₁) :
OpenAddSubgroup.comap f₁ hf₁ (OpenAddSubgroup.comap f₂ hf₂ K) = OpenAddSubgroup.comap (f₂.comp f₁) K
theorem OpenSubgroup.comap_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] {P : Type u_3} [Group P] [TopologicalSpace P] (K : OpenSubgroup P) (f₂ : N →* P) (hf₂ : Continuous f₂) (f₁ : G →* N) (hf₁ : Continuous f₁) :
OpenSubgroup.comap f₁ hf₁ (OpenSubgroup.comap f₂ hf₂ K) = OpenSubgroup.comap (f₂.comp f₁) K
theorem AddSubgroup.isOpen_of_mem_nhds {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (H : AddSubgroup G) {g : G} (hg : H nhds g) :
IsOpen H
theorem Subgroup.isOpen_of_mem_nhds {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) {g : G} (hg : H nhds g) :
IsOpen H
theorem AddSubgroup.isOpen_mono {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] {H₁ : AddSubgroup G} {H₂ : AddSubgroup G} (h : H₁ H₂) (h₁ : IsOpen H₁) :
IsOpen H₂
theorem Subgroup.isOpen_mono {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] {H₁ : Subgroup G} {H₂ : Subgroup G} (h : H₁ H₂) (h₁ : IsOpen H₁) :
IsOpen H₂
theorem Subgroup.isOpen_of_openSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) {U : OpenSubgroup G} (h : U H) :
IsOpen H

If a subgroup of an additive topological group has 0 in its interior, then it is open.

theorem Subgroup.isOpen_of_one_mem_interior {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) (h_1_int : 1 interior H) :
IsOpen H

If a subgroup of a topological group has 1 in its interior, then it is open.

theorem Subgroup.isClosed_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : Subgroup G) (h : IsOpen U) :
theorem AddSubgroup.addSubgroupOf_isOpen {G : Type u_1} [AddGroup G] [TopologicalSpace G] (U : AddSubgroup G) (K : AddSubgroup G) (h : IsOpen K) :
IsOpen (K.addSubgroupOf U)
theorem Subgroup.subgroupOf_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] (U : Subgroup G) (K : Subgroup G) (h : IsOpen K) :
IsOpen (K.subgroupOf U)
theorem AddSubgroup.quotient_finite_of_isOpen' {G : Type u_1} [AddGroup G] [TopologicalSpace G] [TopologicalAddGroup G] [CompactSpace G] (U : AddSubgroup G) (K : AddSubgroup U) (hUopen : IsOpen U) (hKopen : IsOpen K) :
Finite (U K)
theorem Subgroup.quotient_finite_of_isOpen' {G : Type u_1} [Group G] [TopologicalSpace G] [TopologicalGroup G] [CompactSpace G] (U : Subgroup G) (K : Subgroup U) (hUopen : IsOpen U) (hKopen : IsOpen K) :
Finite (U K)
Equations
  • OpenAddSubgroup.instSup = { sup := fun (U V : OpenAddSubgroup G) => { toAddSubgroup := U V, isOpen' := } }
Equations
  • OpenSubgroup.instSup = { sup := fun (U V : OpenSubgroup G) => { toSubgroup := U V, isOpen' := } }
@[simp]
theorem OpenAddSubgroup.toAddSubgroup_sup {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (U : OpenAddSubgroup G) (V : OpenAddSubgroup G) :
(U V) = U V
@[simp]
theorem OpenSubgroup.toSubgroup_sup {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : OpenSubgroup G) (V : OpenSubgroup G) :
(U V) = U V
theorem OpenAddSubgroup.instLattice.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] :
∀ (x x_1 : OpenAddSubgroup G), (x x_1) = (x x_1)
Equations
Equations
theorem Submodule.isOpen_mono {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M] [Module R M] {U : Submodule R M} {P : Submodule R M} (h : U P) (hU : IsOpen U) :
IsOpen P
theorem Ideal.isOpen_of_isOpen_subideal {R : Type u_1} [CommRing R] [TopologicalSpace R] [TopologicalRing R] {U : Ideal R} {I : Ideal R} (h : U I) (hU : IsOpen U) :
IsOpen I

Open normal subgroups of a topological group #

This section builds the lattice OpenNormalSubgroup G of open subgroups in a topological group G, and its additive version OpenNormalAddSubgroup.

theorem OpenNormalSubgroup.ext {G : Type u} :
∀ {inst : Group G} {inst_1 : TopologicalSpace G} {x y : OpenNormalSubgroup G}, (↑x.toOpenSubgroup).carrier = (↑y.toOpenSubgroup).carrierx = y
theorem OpenNormalSubgroup.ext_iff {G : Type u} :
∀ {inst : Group G} {inst_1 : TopologicalSpace G} {x y : OpenNormalSubgroup G}, x = y (↑x.toOpenSubgroup).carrier = (↑y.toOpenSubgroup).carrier
structure OpenNormalSubgroup (G : Type u) [Group G] [TopologicalSpace G] extends OpenSubgroup :

The type of open normal subgroups of a topological group.

  • carrier : Set G
  • mul_mem' : ∀ {a b : G}, a (↑self.toOpenSubgroup).carrierb (↑self.toOpenSubgroup).carriera * b (↑self.toOpenSubgroup).carrier
  • one_mem' : 1 (↑self.toOpenSubgroup).carrier
  • inv_mem' : ∀ {x : G}, x (↑self.toOpenSubgroup).carrierx⁻¹ (↑self.toOpenSubgroup).carrier
  • isOpen' : IsOpen (↑self.toOpenSubgroup).carrier
  • isNormal' : (↑self.toOpenSubgroup).Normal
Instances For
theorem OpenNormalSubgroup.isNormal' {G : Type u} [Group G] [TopologicalSpace G] (self : OpenNormalSubgroup G) :
(↑self.toOpenSubgroup).Normal
theorem OpenNormalAddSubgroup.ext_iff {G : Type u} :
∀ {inst : AddGroup G} {inst_1 : TopologicalSpace G} {x y : OpenNormalAddSubgroup G}, x = y (↑x.toOpenAddSubgroup).carrier = (↑y.toOpenAddSubgroup).carrier
theorem OpenNormalAddSubgroup.ext {G : Type u} :
∀ {inst : AddGroup G} {inst_1 : TopologicalSpace G} {x y : OpenNormalAddSubgroup G}, (↑x.toOpenAddSubgroup).carrier = (↑y.toOpenAddSubgroup).carrierx = y

The type of open normal subgroups of a topological additive group.

  • carrier : Set G
  • add_mem' : ∀ {a b : G}, a (↑self.toOpenAddSubgroup).carrierb (↑self.toOpenAddSubgroup).carriera + b (↑self.toOpenAddSubgroup).carrier
  • zero_mem' : 0 (↑self.toOpenAddSubgroup).carrier
  • neg_mem' : ∀ {x : G}, x (↑self.toOpenAddSubgroup).carrier-x (↑self.toOpenAddSubgroup).carrier
  • isOpen' : IsOpen (↑self.toOpenAddSubgroup).carrier
  • isNormal' : (↑self.toOpenAddSubgroup).Normal
Instances For
theorem OpenNormalAddSubgroup.isNormal' {G : Type u} [AddGroup G] [TopologicalSpace G] (self : OpenNormalAddSubgroup G) :
(↑self.toOpenAddSubgroup).Normal
instance OpenNormalAddSubgroup.instNormal {G : Type u} [AddGroup G] [TopologicalSpace G] (H : OpenNormalAddSubgroup G) :
(↑H.toOpenAddSubgroup).Normal
Equations
  • =
instance OpenNormalSubgroup.instNormal {G : Type u} [Group G] [TopologicalSpace G] (H : OpenNormalSubgroup G) :
(↑H.toOpenSubgroup).Normal
Equations
  • =
Equations
  • OpenNormalAddSubgroup.instSetLike = { coe := fun (U : OpenNormalAddSubgroup G) => U.toOpenAddSubgroup, coe_injective' := }
theorem OpenNormalAddSubgroup.instSetLike.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
∀ (x x_1 : OpenNormalAddSubgroup G), (fun (U : OpenNormalAddSubgroup G) => U.toOpenAddSubgroup) x = (fun (U : OpenNormalAddSubgroup G) => U.toOpenAddSubgroup) x_1x = x_1
Equations
  • OpenNormalSubgroup.instSetLike = { coe := fun (U : OpenNormalSubgroup G) => U.toOpenSubgroup, coe_injective' := }
Equations
  • OpenNormalAddSubgroup.instCoeAddSubgroup = { coe := fun (H : OpenNormalAddSubgroup G) => H.toOpenAddSubgroup }
Equations
  • OpenNormalSubgroup.instCoeSubgroup = { coe := fun (H : OpenNormalSubgroup G) => H.toOpenSubgroup }
Equations
  • OpenNormalAddSubgroup.instPartialOrderOpenNormalAddSubgroup = inferInstance
Equations
  • OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup = inferInstance
theorem OpenNormalAddSubgroup.instInfOpenNormalAddSubgroup.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] (U : OpenNormalAddSubgroup G) (V : OpenNormalAddSubgroup G) :
(U.toOpenAddSubgroup V.toOpenAddSubgroup).Normal
Equations
  • OpenNormalAddSubgroup.instInfOpenNormalAddSubgroup = { inf := fun (U V : OpenNormalAddSubgroup G) => { toOpenAddSubgroup := U.toOpenAddSubgroup V.toOpenAddSubgroup, isNormal' := } }
Equations
  • OpenNormalSubgroup.instInfOpenNormalSubgroup = { inf := fun (U V : OpenNormalSubgroup G) => { toOpenSubgroup := U.toOpenSubgroup V.toOpenSubgroup, isNormal' := } }
Equations
Equations
theorem OpenNormalAddSubgroup.instSupOfContinuousAdd.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] (U : OpenNormalAddSubgroup G) (V : OpenNormalAddSubgroup G) :
(U.toOpenAddSubgroup V.toOpenAddSubgroup).Normal
Equations
  • OpenNormalAddSubgroup.instSupOfContinuousAdd = { sup := fun (U V : OpenNormalAddSubgroup G) => { toOpenAddSubgroup := U.toOpenAddSubgroup V.toOpenAddSubgroup, isNormal' := } }
Equations
  • OpenNormalSubgroup.instSupOfContinuousMul = { sup := fun (U V : OpenNormalSubgroup G) => { toOpenSubgroup := U.toOpenSubgroup V.toOpenSubgroup, isNormal' := } }
theorem OpenNormalAddSubgroup.instSemilatticeSupOpenNormalAddSubgroup.proof_1 {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] :
∀ (x x_1 : OpenNormalAddSubgroup G), (fun (H : OpenNormalAddSubgroup G) => H.toOpenAddSubgroup) (x x_1) = (fun (H : OpenNormalAddSubgroup G) => H.toOpenAddSubgroup) (x x_1)
Equations
Equations
Equations
  • OpenNormalAddSubgroup.instLatticeOfContinuousAdd = Lattice.mk
Equations
  • OpenNormalSubgroup.instLatticeOfContinuousMul = Lattice.mk