Documentation

Mathlib.Order.BoundedOrder

⊤ and ⊥, bounded lattices and variants #

This file defines top and bottom elements (greatest and least elements) of a type, the bounded variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides instances for Prop and fun.

Main declarations #

Common lattices #

Top, bottom element #

class OrderTop (α : Type u) [LE α] extends Top :

An order is an OrderTop if it has a greatest element. We state this using a data mixin, holding the value of and the greatest element constraint.

  • top : α
  • le_top : ∀ (a : α), a

    is the greatest element

Instances
theorem OrderTop.le_top {α : Type u} :
∀ {inst : LE α} [self : OrderTop α] (a : α), a

is the greatest element

noncomputable def topOrderOrNoTopOrder (α : Type u_3) [LE α] :

An order is (noncomputably) either an OrderTop or a NoTopOrder. Use as casesI topOrderOrNoTopOrder α.

Equations
@[simp]
theorem le_top {α : Type u} [LE α] [OrderTop α] {a : α} :
@[simp]
theorem isTop_top {α : Type u} [LE α] [OrderTop α] :
@[simp]
theorem isMax_top {α : Type u} [Preorder α] [OrderTop α] :
@[simp]
theorem not_top_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} :
theorem ne_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :
theorem LT.lt.ne_top {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :

Alias of ne_top_of_lt.

theorem lt_top_of_lt {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :
a <
theorem LT.lt.lt_top {α : Type u} [Preorder α] [OrderTop α] {a : α} {b : α} (h : a < b) :
a <

Alias of lt_top_of_lt.

@[simp]
theorem isMax_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
@[simp]
theorem isTop_iff_eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem not_isMax_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem not_isTop_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem IsMax.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
IsMax aa =

Alias of the forward direction of isMax_iff_eq_top.

theorem IsTop.eq_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
IsTop aa =

Alias of the forward direction of isTop_iff_eq_top.

@[simp]
theorem top_le_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem top_unique {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
a =
theorem eq_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem eq_top_mono {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (h : a b) (h₂ : a = ) :
b =
theorem lt_top_iff_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
@[simp]
theorem not_lt_top_iff {α : Type u} [PartialOrder α] [OrderTop α] {a : α} :
theorem eq_top_or_lt_top {α : Type u} [PartialOrder α] [OrderTop α] (a : α) :
a = a <
theorem Ne.lt_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a ) :
a <
theorem Ne.lt_top' {α : Type u} [PartialOrder α] [OrderTop α] {a : α} (h : a) :
a <
theorem ne_top_of_le_ne_top {α : Type u} [PartialOrder α] [OrderTop α] {a : α} {b : α} (hb : b ) (hab : a b) :
theorem StrictMono.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
f a = f a =
theorem StrictAnti.apply_eq_top_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderTop α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
f a = f a =
theorem top_not_mem_iff {α : Type u} [PartialOrder α] [OrderTop α] {s : Set α} :
¬ s ∀ (x : α), x sx <
theorem StrictMono.maximal_preimage_top {α : Type u} {β : Type v} [LinearOrder α] [Preorder β] [OrderTop β] {f : αβ} (H : StrictMono f) {a : α} (h_top : f a = ) (x : α) :
x a
theorem OrderTop.ext_top {α : Type u_3} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α} (B : OrderTop α) (H : ∀ (x y : α), x y x y) :
class OrderBot (α : Type u) [LE α] extends Bot :

An order is an OrderBot if it has a least element. We state this using a data mixin, holding the value of and the least element constraint.

  • bot : α
  • bot_le : ∀ (a : α), a

    is the least element

Instances
theorem OrderBot.bot_le {α : Type u} :
∀ {inst : LE α} [self : OrderBot α] (a : α), a

is the least element

noncomputable def botOrderOrNoBotOrder (α : Type u_3) [LE α] :

An order is (noncomputably) either an OrderBot or a NoBotOrder. Use as casesI botOrderOrNoBotOrder α.

Equations
@[simp]
theorem bot_le {α : Type u} [LE α] [OrderBot α] {a : α} :
@[simp]
theorem isBot_bot {α : Type u} [LE α] [OrderBot α] :
instance OrderDual.instTop (α : Type u) [Bot α] :
Equations
instance OrderDual.instBot (α : Type u) [Top α] :
Equations
@[simp]
theorem OrderDual.ofDual_bot (α : Type u) [Top α] :
OrderDual.ofDual =
@[simp]
theorem OrderDual.ofDual_top (α : Type u) [Bot α] :
OrderDual.ofDual =
@[simp]
theorem OrderDual.toDual_bot (α : Type u) [Bot α] :
OrderDual.toDual =
@[simp]
theorem OrderDual.toDual_top (α : Type u) [Top α] :
OrderDual.toDual =
@[simp]
theorem isMin_bot {α : Type u} [Preorder α] [OrderBot α] :
@[simp]
theorem not_lt_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} :
theorem ne_bot_of_gt {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :
theorem LT.lt.ne_bot {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :

Alias of ne_bot_of_gt.

theorem bot_lt_of_lt {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :
< b
theorem LT.lt.bot_lt {α : Type u} [Preorder α] [OrderBot α] {a : α} {b : α} (h : a < b) :
< b

Alias of bot_lt_of_lt.

@[simp]
theorem isMin_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
@[simp]
theorem isBot_iff_eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem not_isMin_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem not_isBot_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem IsMin.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
IsMin aa =

Alias of the forward direction of isMin_iff_eq_bot.

theorem IsBot.eq_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
IsBot aa =

Alias of the forward direction of isBot_iff_eq_bot.

@[simp]
theorem le_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem bot_unique {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
a =
theorem eq_bot_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem eq_bot_mono {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (h : a b) (h₂ : b = ) :
a =
theorem bot_lt_iff_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
@[simp]
theorem not_bot_lt_iff {α : Type u} [PartialOrder α] [OrderBot α] {a : α} :
theorem eq_bot_or_bot_lt {α : Type u} [PartialOrder α] [OrderBot α] (a : α) :
a = < a
theorem eq_bot_of_minimal {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : ∀ (b : α), ¬b < a) :
a =
theorem Ne.bot_lt {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a ) :
< a
theorem Ne.bot_lt' {α : Type u} [PartialOrder α] [OrderBot α] {a : α} (h : a) :
< a
theorem ne_bot_of_le_ne_bot {α : Type u} [PartialOrder α] [OrderBot α] {a : α} {b : α} (hb : b ) (hab : b a) :
theorem StrictMono.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictMono f) :
f a = f a =
theorem StrictAnti.apply_eq_bot_iff {α : Type u} {β : Type v} [PartialOrder α] [OrderBot α] [Preorder β] {f : αβ} {a : α} (hf : StrictAnti f) :
f a = f a =
theorem bot_not_mem_iff {α : Type u} [PartialOrder α] [OrderBot α] {s : Set α} :
¬ s ∀ (x : α), x s < x
theorem StrictMono.minimal_preimage_bot {α : Type u} {β : Type v} [LinearOrder α] [PartialOrder β] [OrderBot β] {f : αβ} (H : StrictMono f) {a : α} (h_bot : f a = ) (x : α) :
a x
theorem OrderBot.ext_bot {α : Type u_3} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α} (B : OrderBot α) (H : ∀ (x y : α), x y x y) :
theorem top_sup_eq {α : Type u} [SemilatticeSup α] [OrderTop α] (a : α) :
theorem sup_top_eq {α : Type u} [SemilatticeSup α] [OrderTop α] (a : α) :
theorem bot_sup_eq {α : Type u} [SemilatticeSup α] [OrderBot α] (a : α) :
a = a
theorem sup_bot_eq {α : Type u} [SemilatticeSup α] [OrderBot α] (a : α) :
a = a
@[simp]
theorem sup_eq_bot_iff {α : Type u} [SemilatticeSup α] [OrderBot α] {a : α} {b : α} :
a b = a = b =
theorem top_inf_eq {α : Type u} [SemilatticeInf α] [OrderTop α] (a : α) :
a = a
theorem inf_top_eq {α : Type u} [SemilatticeInf α] [OrderTop α] (a : α) :
a = a
@[simp]
theorem inf_eq_top_iff {α : Type u} [SemilatticeInf α] [OrderTop α] {a : α} {b : α} :
a b = a = b =
theorem bot_inf_eq {α : Type u} [SemilatticeInf α] [OrderBot α] (a : α) :
theorem inf_bot_eq {α : Type u} [SemilatticeInf α] [OrderBot α] (a : α) :

Bounded order #

class BoundedOrder (α : Type u) [LE α] extends OrderTop , OrderBot :

A bounded order describes an order (≤) with a top and bottom element, denoted and respectively.

    Instances
    Equations
    Equations
    • =
    Equations
    • =

    In this section we prove some properties about monotone and antitone operations on Prop #

    theorem monotone_and {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
    Monotone fun (x : α) => p x q x
    theorem monotone_or {α : Type u} [Preorder α] {p : αProp} {q : αProp} (m_p : Monotone p) (m_q : Monotone q) :
    Monotone fun (x : α) => p x q x
    theorem monotone_le {α : Type u} [Preorder α] {x : α} :
    Monotone fun (x_1 : α) => x x_1
    theorem monotone_lt {α : Type u} [Preorder α] {x : α} :
    Monotone fun (x_1 : α) => x < x_1
    theorem antitone_le {α : Type u} [Preorder α] {x : α} :
    Antitone fun (x_1 : α) => x_1 x
    theorem antitone_lt {α : Type u} [Preorder α] {x : α} :
    Antitone fun (x_1 : α) => x_1 < x
    theorem Monotone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
    Monotone fun (y : α) => ∀ (x : β), P x y
    theorem Antitone.forall {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
    Antitone fun (y : α) => ∀ (x : β), P x y
    theorem Monotone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sMonotone (P x)) :
    Monotone fun (y : α) => ∀ (x : β), x sP x y
    theorem Antitone.ball {α : Type u} {β : Type v} [Preorder α] {P : βαProp} {s : Set β} (hP : ∀ (x : β), x sAntitone (P x)) :
    Antitone fun (y : α) => ∀ (x : β), x sP x y
    theorem Monotone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Monotone (P x)) :
    Monotone fun (y : α) => ∃ (x : β), P x y
    theorem Antitone.exists {α : Type u} {β : Type v} [Preorder α] {P : βαProp} (hP : ∀ (x : β), Antitone (P x)) :
    Antitone fun (y : α) => ∃ (x : β), P x y
    theorem forall_ge_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Monotone P) :
    (∀ (x : α), x x₀P x) P x₀
    theorem forall_le_iff {α : Type u} [Preorder α] {P : αProp} {x₀ : α} (hP : Antitone P) :
    (∀ (x : α), x x₀P x) P x₀
    theorem exists_ge_and_iff_exists {α : Type u} [SemilatticeSup α] {P : αProp} {x₀ : α} (hP : Monotone P) :
    (∃ (x : α), x₀ x P x) ∃ (x : α), P x
    theorem exists_le_and_iff_exists {α : Type u} [SemilatticeInf α] {P : αProp} {x₀ : α} (hP : Antitone P) :
    (∃ (x : α), x x₀ P x) ∃ (x : α), P x

    Function lattices #

    instance Pi.instBotForall {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
    Bot ((i : ι) → α' i)
    Equations
    • Pi.instBotForall = { bot := fun (x : ι) => }
    @[simp]
    theorem Pi.bot_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] (i : ι) :
    theorem Pi.bot_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Bot (α' i)] :
    = fun (x : ι) =>
    instance Pi.instTopForall {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
    Top ((i : ι) → α' i)
    Equations
    • Pi.instTopForall = { top := fun (x : ι) => }
    @[simp]
    theorem Pi.top_apply {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] (i : ι) :
    theorem Pi.top_def {ι : Type u_3} {α' : ιType u_4} [(i : ι) → Top (α' i)] :
    = fun (x : ι) =>
    instance Pi.instOrderTop {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderTop (α' i)] :
    OrderTop ((i : ι) → α' i)
    Equations
    instance Pi.instOrderBot {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → OrderBot (α' i)] :
    OrderBot ((i : ι) → α' i)
    Equations
    instance Pi.instBoundedOrder {ι : Type u_3} {α' : ιType u_4} [(i : ι) → LE (α' i)] [(i : ι) → BoundedOrder (α' i)] :
    BoundedOrder ((i : ι) → α' i)
    Equations
    • Pi.instBoundedOrder = BoundedOrder.mk
    theorem eq_bot_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
    x =
    theorem eq_top_of_bot_eq_top {α : Type u} [PartialOrder α] [BoundedOrder α] (hα : = ) (x : α) :
    x =
    @[reducible, inline]
    abbrev OrderTop.lift {α : Type u} {β : Type v} [LE α] [Top α] [LE β] [OrderTop β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) :

    Pullback an OrderTop.

    Equations
    @[reducible, inline]
    abbrev OrderBot.lift {α : Type u} {β : Type v} [LE α] [Bot α] [LE β] [OrderBot β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_bot : f = ) :

    Pullback an OrderBot.

    Equations
    @[reducible, inline]
    abbrev BoundedOrder.lift {α : Type u} {β : Type v} [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : αβ) (map_le : ∀ (a b : α), f a f ba b) (map_top : f = ) (map_bot : f = ) :

    Pullback a BoundedOrder.

    Equations

    Subtype, order dual, product lattices #

    @[reducible, inline]
    abbrev Subtype.orderBot {α : Type u} {p : αProp} [LE α] [OrderBot α] (hbot : p ) :
    OrderBot { x : α // p x }

    A subtype remains a -order if the property holds at .

    Equations
    @[reducible, inline]
    abbrev Subtype.orderTop {α : Type u} {p : αProp} [LE α] [OrderTop α] (htop : p ) :
    OrderTop { x : α // p x }

    A subtype remains a -order if the property holds at .

    Equations
    @[reducible, inline]
    abbrev Subtype.boundedOrder {α : Type u} {p : αProp} [LE α] [BoundedOrder α] (hbot : p ) (htop : p ) :

    A subtype remains a bounded order if the property holds at and .

    Equations
    @[simp]
    theorem Subtype.mk_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
    , hbot =
    @[simp]
    theorem Subtype.mk_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
    , htop =
    theorem Subtype.coe_bot {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) :
    =
    theorem Subtype.coe_top {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) :
    =
    @[simp]
    theorem Subtype.coe_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : { x : α // p x }} :
    x = x =
    @[simp]
    theorem Subtype.coe_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : { x : α // p x }} :
    x = x =
    @[simp]
    theorem Subtype.mk_eq_bot_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderBot α] [OrderBot (Subtype p)] (hbot : p ) {x : α} (hx : p x) :
    x, hx = x =
    @[simp]
    theorem Subtype.mk_eq_top_iff {α : Type u} {p : αProp} [PartialOrder α] [OrderTop α] [OrderTop (Subtype p)] (htop : p ) {x : α} (hx : p x) :
    x, hx = x =
    instance Prod.instTop (α : Type u) (β : Type v) [Top α] [Top β] :
    Top (α × β)
    Equations
    instance Prod.instBot (α : Type u) (β : Type v) [Bot α] [Bot β] :
    Bot (α × β)
    Equations
    theorem Prod.fst_top (α : Type u) (β : Type v) [Top α] [Top β] :
    theorem Prod.snd_top (α : Type u) (β : Type v) [Top α] [Top β] :
    theorem Prod.fst_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
    theorem Prod.snd_bot (α : Type u) (β : Type v) [Bot α] [Bot β] :
    instance Prod.instOrderTop (α : Type u) (β : Type v) [LE α] [LE β] [OrderTop α] [OrderTop β] :
    OrderTop (α × β)
    Equations
    instance Prod.instOrderBot (α : Type u) (β : Type v) [LE α] [LE β] [OrderBot α] [OrderBot β] :
    OrderBot (α × β)
    Equations
    instance Prod.instBoundedOrder (α : Type u) (β : Type v) [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
    Equations
    instance ULift.instTop {α : Type u} [Top α] :
    Equations
    • ULift.instTop = { top := { down := } }
    @[simp]
    theorem ULift.up_top {α : Type u} [Top α] :
    { down := } =
    @[simp]
    theorem ULift.down_top {α : Type u} [Top α] :
    .down =
    instance ULift.instBot {α : Type u} [Bot α] :
    Equations
    • ULift.instBot = { bot := { down := } }
    @[simp]
    theorem ULift.up_bot {α : Type u} [Bot α] :
    { down := } =
    @[simp]
    theorem ULift.down_bot {α : Type u} [Bot α] :
    .down =
    instance ULift.instOrderBot {α : Type u} [LE α] [OrderBot α] :
    Equations
    instance ULift.instOrderTop {α : Type u} [LE α] [OrderTop α] :
    Equations
    Equations
    • ULift.instBoundedOrder = BoundedOrder.mk
    theorem min_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
    theorem max_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
    theorem min_top_left {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
    min a = a
    theorem max_bot_left {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
    max a = a
    theorem min_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
    min a = a
    theorem max_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
    max a = a
    theorem min_bot_right {α : Type u} [LinearOrder α] [OrderBot α] (a : α) :
    theorem max_top_right {α : Type u} [LinearOrder α] [OrderTop α] (a : α) :
    @[simp]
    theorem min_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
    min a b = a = b =
    @[simp]
    theorem max_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
    max a b = a = b =
    @[simp]
    theorem max_eq_bot {α : Type u} [LinearOrder α] [OrderBot α] {a : α} {b : α} :
    max a b = a = b =
    @[simp]
    theorem min_eq_top {α : Type u} [LinearOrder α] [OrderTop α] {a : α} {b : α} :
    min a b = a = b =
    @[simp]
    theorem bot_ne_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
    @[simp]
    theorem top_ne_bot {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
    @[simp]
    theorem bot_lt_top {α : Type u} [PartialOrder α] [BoundedOrder α] [Nontrivial α] :
    @[simp]
    @[simp]