Documentation

KolmogorovExtension4.Content

noncomputable def MeasureTheory.extendContent {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : (s : Set α) → s CENNReal) (m_empty : m = 0) (m_add : ∀ (I : Finset (Set α)) (h_ss : I C), (↑I).PairwiseDisjoint id∀ (h_mem : ⋃₀ I C), m (⋃₀ I) h_mem = u : { x : Set α // x I }, m u ) :

Build an AddContent from an additive function defined on a semiring.

Equations
Instances For
    theorem MeasureTheory.extendContent_eq_extend {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : (s : Set α) → s CENNReal) (m_empty : m = 0) (m_add : ∀ (I : Finset (Set α)) (h_ss : I C), (↑I).PairwiseDisjoint id∀ (h_mem : ⋃₀ I C), m (⋃₀ I) h_mem = u : { x : Set α // x I }, m u ) :
    theorem MeasureTheory.extendContent_eq {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetSemiring C) (m : (s : Set α) → s CENNReal) (m_empty : m = 0) (m_add : ∀ (I : Finset (Set α)) (h_ss : I C), (↑I).PairwiseDisjoint id∀ (h_mem : ⋃₀ I C), m (⋃₀ I) h_mem = u : { x : Set α // x I }, m u ) (hs : s C) :
    (MeasureTheory.extendContent hC m m_empty m_add) s = m s hs
    theorem MeasureTheory.extendContent_eq_top {α : Type u_1} {C : Set (Set α)} {s : Set α} (hC : MeasureTheory.IsSetSemiring C) (m : (s : Set α) → s CENNReal) (m_empty : m = 0) (m_add : ∀ (I : Finset (Set α)) (h_ss : I C), (↑I).PairwiseDisjoint id∀ (h_mem : ⋃₀ I C), m (⋃₀ I) h_mem = u : { x : Set α // x I }, m u ) (hs : sC) :
    (MeasureTheory.extendContent hC m m_empty m_add) s =
    Equations
    Instances For
      theorem MeasureTheory.addContent_sUnion_le_sum {α : Type u_1} {C : Set (Set α)} {m : MeasureTheory.AddContent C} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (h_ss : J C) (h_mem : ⋃₀ J C) :
      m (⋃₀ J) uJ, m u
      theorem MeasureTheory.addContent_le_sum_of_subset_sUnion {α : Type u_1} {C : Set (Set α)} {t : Set α} {m : MeasureTheory.AddContent C} (hC : MeasureTheory.IsSetSemiring C) (J : Finset (Set α)) (h_ss : J C) (ht : t C) (htJ : t ⋃₀ J) :
      m t uJ, m u
      theorem MeasureTheory.addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le {α : Type u_1} {C : Set (Set α)} {m : MeasureTheory.AddContent C} (hC : MeasureTheory.IsSetSemiring C) (m_subadd : ∀ (f : Set α), (∀ (i : ), f i C)⋃ (i : ), f i CPairwise (Disjoint on f)m (⋃ (i : ), f i) ∑' (i : ), m (f i)) (f : Set α) (hf : ∀ (i : ), f i C) (hf_Union : ⋃ (i : ), f i C) (hf_disj : Pairwise (Disjoint on f)) :
      m (⋃ (i : ), f i) = ∑' (i : ), m (f i)

      If an AddContent is σ-subadditive on a semi-ring of sets, then it is σ-additive.

      theorem MeasureTheory.addContent_diff_of_ne_top {α : Type u_1} {C : Set (Set α)} (m : MeasureTheory.AddContent C) (hC : MeasureTheory.IsSetRing C) (hm_ne_top : sC, m s ) {s : Set α} {t : Set α} (hs : s C) (ht : t C) (hts : t s) :
      m (s \ t) = m s - m t
      theorem MeasureTheory.addContent_accumulate {α : Type u_1} {C : Set (Set α)} (m : MeasureTheory.AddContent C) (hC : MeasureTheory.IsSetRing C) {s : Set α} (hs_disj : Pairwise (Disjoint on s)) (hsC : ∀ (i : ), s i C) (n : ) :
      m (Set.Accumulate s n) = iFinset.range (n + 1), m (s i)
      theorem MeasureTheory.tendsto_atTop_addContent_iUnion_of_addContent_iUnion_eq_tsum {α : Type u_1} {C : Set (Set α)} {m : MeasureTheory.AddContent C} (hC : MeasureTheory.IsSetRing C) (m_iUnion : ∀ (f : Set α), (∀ (i : ), f i C)⋃ (i : ), f i CPairwise (Disjoint on f)m (⋃ (i : ), f i) = ∑' (i : ), m (f i)) (f : Set α) (hf_mono : Monotone f) (hf : ∀ (i : ), f i C) (hf_Union : ⋃ (i : ), f i C) :
      Filter.Tendsto (fun (n : ) => m (f n)) Filter.atTop (nhds (m (⋃ (i : ), f i)))

      If an additive content is σ-additive on a set ring, then the content of a monotone sequence of sets tends to the content of the union.

      theorem MeasureTheory.addContent_iUnion_le_of_addContent_iUnion_eq_tsum {α : Type u_1} {C : Set (Set α)} {m : MeasureTheory.AddContent C} (hC : MeasureTheory.IsSetRing C) (m_iUnion : ∀ (f : Set α), (∀ (i : ), f i C)⋃ (i : ), f i CPairwise (Disjoint on f)m (⋃ (i : ), f i) = ∑' (i : ), m (f i)) (f : Set α) (hf : ∀ (i : ), f i C) (hf_Union : ⋃ (i : ), f i C) :
      m (⋃ (i : ), f i) ∑' (i : ), m (f i)

      If an additive content is σ-additive on a set ring, then it is σ-subadditive.