noncomputable def
MeasureTheory.extendContent
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : (s : Set α) → s ∈ C → ENNReal)
(m_empty : m ∅ ⋯ = 0)
(m_add : ∀ (I : Finset (Set α)) (h_ss : ↑I ⊆ C),
(↑I).PairwiseDisjoint id → ∀ (h_mem : ⋃₀ ↑I ∈ C), m (⋃₀ ↑I) h_mem = ∑ u : { x : Set α // x ∈ I }, m ↑u ⋯)
:
Build an AddContent
from an additive function defined on a semiring.
Equations
- MeasureTheory.extendContent hC m m_empty m_add = { toFun := MeasureTheory.extend m, empty' := ⋯, sUnion' := ⋯ }
Instances For
theorem
MeasureTheory.extendContent_eq_extend
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : (s : Set α) → s ∈ C → ENNReal)
(m_empty : m ∅ ⋯ = 0)
(m_add : ∀ (I : Finset (Set α)) (h_ss : ↑I ⊆ C),
(↑I).PairwiseDisjoint id → ∀ (h_mem : ⋃₀ ↑I ∈ C), m (⋃₀ ↑I) h_mem = ∑ u : { x : Set α // x ∈ I }, m ↑u ⋯)
:
⇑(MeasureTheory.extendContent hC m m_empty m_add) = MeasureTheory.extend m
theorem
MeasureTheory.extendContent_eq
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(m : (s : Set α) → s ∈ C → ENNReal)
(m_empty : m ∅ ⋯ = 0)
(m_add : ∀ (I : Finset (Set α)) (h_ss : ↑I ⊆ C),
(↑I).PairwiseDisjoint id → ∀ (h_mem : ⋃₀ ↑I ∈ C), m (⋃₀ ↑I) h_mem = ∑ u : { x : Set α // x ∈ I }, m ↑u ⋯)
(hs : s ∈ C)
:
(MeasureTheory.extendContent hC m m_empty m_add) s = m s hs
theorem
MeasureTheory.extendContent_eq_top
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(m : (s : Set α) → s ∈ C → ENNReal)
(m_empty : m ∅ ⋯ = 0)
(m_add : ∀ (I : Finset (Set α)) (h_ss : ↑I ⊆ C),
(↑I).PairwiseDisjoint id → ∀ (h_mem : ⋃₀ ↑I ∈ C), m (⋃₀ ↑I) h_mem = ∑ u : { x : Set α // x ∈ I }, m ↑u ⋯)
(hs : s ∉ C)
:
(MeasureTheory.extendContent hC m m_empty m_add) s = ⊤
noncomputable def
MeasureTheory.AddContent.extend
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
:
Equations
- MeasureTheory.AddContent.extend hC m = { toFun := MeasureTheory.extend fun (x : Set α) (x_1 : x ∈ C) => m x, empty' := ⋯, sUnion' := ⋯ }
Instances For
theorem
MeasureTheory.AddContent.extend_eq_extend
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
:
⇑(MeasureTheory.AddContent.extend hC m) = MeasureTheory.extend fun (x : Set α) (x_1 : x ∈ C) => m x
theorem
MeasureTheory.AddContent.extend_eq
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(hs : s ∈ C)
:
(MeasureTheory.AddContent.extend hC m) s = m s
theorem
MeasureTheory.AddContent.extend_eq_top
{α : Type u_1}
{C : Set (Set α)}
{s : Set α}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(hs : s ∉ C)
:
(MeasureTheory.AddContent.extend hC m) s = ⊤
theorem
MeasureTheory.addContent_sUnion_le_sum
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(h_ss : ↑J ⊆ C)
(h_mem : ⋃₀ ↑J ∈ C)
:
theorem
MeasureTheory.addContent_le_sum_of_subset_sUnion
{α : Type u_1}
{C : Set (Set α)}
{t : Set α}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(J : Finset (Set α))
(h_ss : ↑J ⊆ C)
(ht : t ∈ C)
(htJ : t ⊆ ⋃₀ ↑J)
:
m t ≤ ∑ u ∈ J, m u
theorem
MeasureTheory.addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetSemiring C)
(m_subadd : ∀ (f : ℕ → Set α),
(∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
(f : ℕ → Set α)
(hf : ∀ (i : ℕ), f i ∈ C)
(hf_Union : ⋃ (i : ℕ), f i ∈ C)
(hf_disj : Pairwise (Disjoint on f))
:
If an AddContent
is σ-subadditive on a semi-ring of sets, then it is σ-additive.
theorem
MeasureTheory.addContent_accumulate
{α : Type u_1}
{C : Set (Set α)}
(m : MeasureTheory.AddContent C)
(hC : MeasureTheory.IsSetRing C)
{s : ℕ → Set α}
(hs_disj : Pairwise (Disjoint on s))
(hsC : ∀ (i : ℕ), s i ∈ C)
(n : ℕ)
:
m (Set.Accumulate s n) = ∑ i ∈ Finset.range (n + 1), m (s i)
theorem
MeasureTheory.tendsto_atTop_addContent_iUnion_of_addContent_iUnion_eq_tsum
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetRing C)
(m_iUnion : ∀ (f : ℕ → Set α),
(∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) = ∑' (i : ℕ), m (f i))
(f : ℕ → Set α)
(hf_mono : Monotone f)
(hf : ∀ (i : ℕ), f i ∈ C)
(hf_Union : ⋃ (i : ℕ), f i ∈ C)
:
Filter.Tendsto (fun (n : ℕ) => m (f n)) Filter.atTop (nhds (m (⋃ (i : ℕ), f i)))
If an additive content is σ-additive on a set ring, then the content of a monotone sequence of sets tends to the content of the union.
theorem
MeasureTheory.addContent_iUnion_le_of_addContent_iUnion_eq_tsum
{α : Type u_1}
{C : Set (Set α)}
{m : MeasureTheory.AddContent C}
(hC : MeasureTheory.IsSetRing C)
(m_iUnion : ∀ (f : ℕ → Set α),
(∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → Pairwise (Disjoint on f) → m (⋃ (i : ℕ), f i) = ∑' (i : ℕ), m (f i))
(f : ℕ → Set α)
(hf : ∀ (i : ℕ), f i ∈ C)
(hf_Union : ⋃ (i : ℕ), f i ∈ C)
:
If an additive content is σ-additive on a set ring, then it is σ-subadditive.