Documentation

Mathlib.Data.Finset.Basic

Finite sets #

Terms of type Finset α are one way of talking about finite subsets of α in mathlib. Below, Finset α is defined as a structure with 2 fields:

  1. val is a Multiset α of elements;
  2. nodup is a proof that val has no duplicates.

Finsets in Lean are constructive in that they have an underlying List that enumerates their elements. In particular, any function that uses the data of the underlying list cannot depend on its ordering. This is handled on the Multiset level by multiset API, so in most cases one needn't worry about it explicitly.

Finsets give a basic foundation for defining finite sums and products over types:

  1. ∑ i ∈ (s : Finset α), f i;
  2. ∏ i ∈ (s : Finset α), f i.

Lean refers to these operations as big operators. More information can be found in Mathlib/Algebra/BigOperators/Group/Finset.lean.

Finsets are directly used to define fintypes in Lean. A Fintype α instance for a type α consists of a universal Finset α containing every term of α, called univ. See Mathlib/Data/Fintype/Basic.lean. There is also univ', the noncomputable partner to univ, which is defined to be α as a finset if α is finite, and the empty finset otherwise. See Mathlib/Data/Fintype/Basic.lean.

Finset.card, the size of a finset is defined in Mathlib/Data/Finset/Card.lean. This is then used to define Fintype.card, the size of a type.

Main declarations #

Main definitions #

Finset constructions #

Finsets from functions #

The lattice structure on subsets of finsets #

There is a natural lattice structure on the subsets of a set. In Lean, we use lattice notation to talk about things involving unions and intersections. See Mathlib/Order/Lattice.lean. For the lattice structure on finsets, is called bot with ⊥ = ∅ and is called top with ⊤ = univ.

Operations on two or more finsets #

Predicates on finsets #

Equivalences between finsets #

Tags #

finite sets, finset

structure Finset (α : Type u_4) :
Type u_4

Finset α is the type of finite sets of elements of α. It is implemented as a multiset (a list up to permutation) which has no duplicate elements.

  • val : Multiset α

    The underlying multiset

  • nodup : self.val.Nodup

    val contains no duplicates

theorem Finset.nodup {α : Type u_4} (self : Finset α) :
self.val.Nodup

val contains no duplicates

instance Multiset.canLiftFinset {α : Type u_4} :
CanLift (Multiset α) (Finset α) Finset.val Multiset.Nodup
Equations
  • =
theorem Finset.eq_of_veq {α : Type u_1} {s : Finset α} {t : Finset α} :
s.val = t.vals = t
theorem Finset.val_injective {α : Type u_1} :
@[simp]
theorem Finset.val_inj {α : Type u_1} {s : Finset α} {t : Finset α} :
s.val = t.val s = t
@[simp]
theorem Finset.dedup_eq_self {α : Type u_1} [DecidableEq α] (s : Finset α) :
s.val.dedup = s.val
instance Finset.decidableEq {α : Type u_1} [DecidableEq α] :
Equations

membership #

instance Finset.instMembership {α : Type u_1} :
Equations
  • Finset.instMembership = { mem := fun (s : Finset α) (a : α) => a s.val }
theorem Finset.mem_def {α : Type u_1} {a : α} {s : Finset α} :
a s a s.val
@[simp]
theorem Finset.mem_val {α : Type u_1} {a : α} {s : Finset α} :
a s.val a s
@[simp]
theorem Finset.mem_mk {α : Type u_1} {a : α} {s : Multiset α} {nd : s.Nodup} :
a { val := s, nodup := nd } a s
instance Finset.decidableMem {α : Type u_1} [_h : DecidableEq α] (a : α) (s : Finset α) :
Equations
@[simp]
theorem Finset.forall_mem_not_eq {α : Type u_1} {s : Finset α} {a : α} :
(∀ bs, ¬a = b) as
@[simp]
theorem Finset.forall_mem_not_eq' {α : Type u_1} {s : Finset α} {a : α} :
(∀ bs, ¬b = a) as

set coercion #

def Finset.toSet {α : Type u_1} (s : Finset α) :
Set α

Convert a finset to a set in the natural way.

Equations
  • s = {a : α | a s}
instance Finset.instCoeTCSet {α : Type u_1} :
CoeTC (Finset α) (Set α)

Convert a finset to a set in the natural way.

Equations
  • Finset.instCoeTCSet = { coe := Finset.toSet }
@[simp]
theorem Finset.mem_coe {α : Type u_1} {a : α} {s : Finset α} :
a s a s
@[simp]
theorem Finset.setOf_mem {α : Type u_4} {s : Finset α} :
{a : α | a s} = s
@[simp]
theorem Finset.coe_mem {α : Type u_1} {s : Finset α} (x : s) :
x s
theorem Finset.mk_coe {α : Type u_1} {s : Finset α} (x : s) {h : x s} :
x, h = x
instance Finset.decidableMem' {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
Decidable (a s)
Equations

extensionality #

theorem Finset.ext_iff {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ = s₂ ∀ (a : α), a s₁ a s₂
theorem Finset.ext {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} (h : ∀ (a : α), a s₁ a s₂) :
s₁ = s₂
@[simp]
theorem Finset.coe_inj {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ = s₂ s₁ = s₂
theorem Finset.coe_injective {α : Type u_4} :
Function.Injective Finset.toSet

type coercion #

instance Finset.instCoeSortType {α : Type u} :

Coercion from a finset to the corresponding subtype.

Equations
  • Finset.instCoeSortType = { coe := fun (s : Finset α) => { x : α // x s } }
theorem Finset.forall_coe {α : Type u_4} (s : Finset α) (p : { x : α // x s }Prop) :
(∀ (x : { x : α // x s }), p x) ∀ (x : α) (h : x s), p x, h
theorem Finset.exists_coe {α : Type u_4} (s : Finset α) (p : { x : α // x s }Prop) :
(∃ (x : { x : α // x s }), p x) ∃ (x : α) (h : x s), p x, h
instance Finset.PiFinsetCoe.canLift (ι : Type u_4) (α : ιType u_5) [_ne : ∀ (i : ι), Nonempty (α i)] (s : Finset ι) :
CanLift ((i : { x : ι // x s }) → α i) ((i : ι) → α i) (fun (f : (i : ι) → α i) (i : { x : ι // x s }) => f i) fun (x : (i : { x : ι // x s }) → α i) => True
Equations
  • =
instance Finset.PiFinsetCoe.canLift' (ι : Type u_4) (α : Type u_5) [_ne : Nonempty α] (s : Finset ι) :
CanLift ({ x : ι // x s }α) (ια) (fun (f : ια) (i : { x : ι // x s }) => f i) fun (x : { x : ι // x s }α) => True
Equations
  • =
instance Finset.FinsetCoe.canLift {α : Type u_1} (s : Finset α) :
CanLift α { x : α // x s } Subtype.val fun (a : α) => a s
Equations
  • =
@[simp]
theorem Finset.coe_sort_coe {α : Type u_1} (s : Finset α) :
s = { x : α // x s }

Subset and strict subset relations #

instance Finset.instHasSubset {α : Type u_1} :
Equations
  • Finset.instHasSubset = { Subset := fun (s t : Finset α) => ∀ ⦃a : α⦄, a sa t }
instance Finset.instHasSSubset {α : Type u_1} :
Equations
instance Finset.partialOrder {α : Type u_1} :
Equations
instance Finset.instIsReflSubset {α : Type u_1} :
IsRefl (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsTransSubset {α : Type u_1} :
IsTrans (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsAntisymmSubset {α : Type u_1} :
IsAntisymm (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsIrreflSSubset {α : Type u_1} :
IsIrrefl (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsTransSSubset {α : Type u_1} :
IsTrans (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsAsymmSSubset {α : Type u_1} :
IsAsymm (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.instIsNonstrictStrictOrderSubsetSSubset {α : Type u_1} :
IsNonstrictStrictOrder (Finset α) (fun (x1 x2 : Finset α) => x1 x2) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
theorem Finset.subset_def {α : Type u_1} {s : Finset α} {t : Finset α} :
s t s.val t.val
theorem Finset.ssubset_def {α : Type u_1} {s : Finset α} {t : Finset α} :
s t s t ¬t s
theorem Finset.Subset.refl {α : Type u_1} (s : Finset α) :
s s
theorem Finset.Subset.rfl {α : Type u_1} {s : Finset α} :
s s
theorem Finset.subset_of_eq {α : Type u_1} {s : Finset α} {t : Finset α} (h : s = t) :
s t
theorem Finset.Subset.trans {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} {s₃ : Finset α} :
s₁ s₂s₂ s₃s₁ s₃
theorem Finset.Superset.trans {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} {s₃ : Finset α} :
s₁ s₂s₂ s₃s₁ s₃
theorem Finset.mem_of_subset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} {a : α} :
s₁ s₂a s₁a s₂
theorem Finset.not_mem_mono {α : Type u_1} {s : Finset α} {t : Finset α} (h : s t) {a : α} :
atas
theorem Finset.Subset.antisymm {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} (H₁ : s₁ s₂) (H₂ : s₂ s₁) :
s₁ = s₂
theorem Finset.subset_iff {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ ∀ ⦃x : α⦄, x s₁x s₂
@[simp]
theorem Finset.coe_subset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ s₁ s₂
theorem Finset.GCongr.coe_subset_coe {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂s₁ s₂

Alias of the reverse direction of Finset.coe_subset.

@[simp]
theorem Finset.val_le_iff {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁.val s₂.val s₁ s₂
theorem Finset.Subset.antisymm_iff {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ = s₂ s₁ s₂ s₂ s₁
theorem Finset.not_subset {α : Type u_1} {s : Finset α} {t : Finset α} :
¬s t xs, xt
@[simp]
theorem Finset.le_eq_subset {α : Type u_1} :
(fun (x1 x2 : Finset α) => x1 x2) = fun (x1 x2 : Finset α) => x1 x2
@[simp]
theorem Finset.lt_eq_subset {α : Type u_1} :
(fun (x1 x2 : Finset α) => x1 < x2) = fun (x1 x2 : Finset α) => x1 x2
theorem Finset.le_iff_subset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ s₁ s₂
theorem Finset.lt_iff_ssubset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ < s₂ s₁ s₂
@[simp]
theorem Finset.coe_ssubset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ s₁ s₂
@[simp]
theorem Finset.val_lt_iff {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} :
s₁.val < s₂.val s₁ s₂
theorem Finset.val_strictMono {α : Type u_1} :
StrictMono Finset.val
theorem Finset.ssubset_iff_subset_ne {α : Type u_1} {s : Finset α} {t : Finset α} :
s t s t s t
theorem Finset.ssubset_iff_of_subset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} (h : s₁ s₂) :
s₁ s₂ xs₂, xs₁
theorem Finset.ssubset_of_ssubset_of_subset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} {s₃ : Finset α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
s₁ s₃
theorem Finset.ssubset_of_subset_of_ssubset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} {s₃ : Finset α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
s₁ s₃
theorem Finset.exists_of_ssubset {α : Type u_1} {s₁ : Finset α} {s₂ : Finset α} (h : s₁ s₂) :
xs₂, xs₁
instance Finset.isWellFounded_ssubset {α : Type u_1} :
IsWellFounded (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.wellFoundedLT {α : Type u_1} :
Equations
  • =

Order embedding from Finset α to Set α #

def Finset.coeEmb {α : Type u_1} :

Coercion to Set α as an OrderEmbedding.

Equations
  • Finset.coeEmb = { toFun := Finset.toSet, inj' := , map_rel_iff' := }
@[simp]
theorem Finset.coe_coeEmb {α : Type u_1} :
Finset.coeEmb = Finset.toSet

Nonempty #

def Finset.Nonempty {α : Type u_1} (s : Finset α) :

The property s.Nonempty expresses the fact that the finset s is not empty. It should be used in theorem assumptions instead of ∃ x, x ∈ s or s ≠ ∅ as it gives access to a nice API thanks to the dot notation.

Equations
  • s.Nonempty = ∃ (x : α), x s
instance Finset.decidableNonempty {α : Type u_1} {s : Finset α} :
Decidable s.Nonempty
Equations
@[simp]
theorem Finset.coe_nonempty {α : Type u_1} {s : Finset α} :
(↑s).Nonempty s.Nonempty
theorem Finset.nonempty_coe_sort {α : Type u_1} {s : Finset α} :
Nonempty { x : α // x s } s.Nonempty
theorem Finset.Nonempty.to_set {α : Type u_1} {s : Finset α} :
s.Nonempty(↑s).Nonempty

Alias of the reverse direction of Finset.coe_nonempty.

theorem Finset.Nonempty.coe_sort {α : Type u_1} {s : Finset α} :
s.NonemptyNonempty { x : α // x s }

Alias of the reverse direction of Finset.nonempty_coe_sort.

theorem Finset.Nonempty.exists_mem {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
∃ (x : α), x s
@[deprecated Finset.Nonempty.exists_mem]
theorem Finset.Nonempty.bex {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
∃ (x : α), x s

Alias of Finset.Nonempty.exists_mem.

theorem Finset.Nonempty.mono {α : Type u_1} {s : Finset α} {t : Finset α} (hst : s t) (hs : s.Nonempty) :
t.Nonempty
theorem Finset.Nonempty.forall_const {α : Type u_1} {s : Finset α} (h : s.Nonempty) {p : Prop} :
(∀ xs, p) p
theorem Finset.Nonempty.to_subtype {α : Type u_1} {s : Finset α} :
s.NonemptyNonempty { x : α // x s }
theorem Finset.Nonempty.to_type {α : Type u_1} {s : Finset α} :
s.NonemptyNonempty α

empty #

def Finset.empty {α : Type u_1} :

The empty finset

Equations
  • Finset.empty = { val := 0, nodup := }
Equations
  • Finset.instEmptyCollection = { emptyCollection := Finset.empty }
instance Finset.inhabitedFinset {α : Type u_1} :
Equations
  • Finset.inhabitedFinset = { default := }
@[simp]
theorem Finset.empty_val {α : Type u_1} :
.val = 0
@[simp]
theorem Finset.not_mem_empty {α : Type u_1} (a : α) :
a
@[simp]
theorem Finset.not_nonempty_empty {α : Type u_1} :
¬.Nonempty
@[simp]
theorem Finset.mk_zero {α : Type u_1} :
{ val := 0, nodup := } =
theorem Finset.ne_empty_of_mem {α : Type u_1} {a : α} {s : Finset α} (h : a s) :
theorem Finset.Nonempty.ne_empty {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
@[simp]
theorem Finset.empty_subset {α : Type u_1} (s : Finset α) :
theorem Finset.eq_empty_of_forall_not_mem {α : Type u_1} {s : Finset α} (H : ∀ (x : α), xs) :
s =
theorem Finset.eq_empty_iff_forall_not_mem {α : Type u_1} {s : Finset α} :
s = ∀ (x : α), xs
@[simp]
theorem Finset.val_eq_zero {α : Type u_1} {s : Finset α} :
s.val = 0 s =
theorem Finset.subset_empty {α : Type u_1} {s : Finset α} :
@[simp]
theorem Finset.not_ssubset_empty {α : Type u_1} (s : Finset α) :
theorem Finset.nonempty_of_ne_empty {α : Type u_1} {s : Finset α} (h : s ) :
s.Nonempty
theorem Finset.nonempty_iff_ne_empty {α : Type u_1} {s : Finset α} :
s.Nonempty s
@[simp]
theorem Finset.not_nonempty_iff_eq_empty {α : Type u_1} {s : Finset α} :
¬s.Nonempty s =
theorem Finset.eq_empty_or_nonempty {α : Type u_1} (s : Finset α) :
s = s.Nonempty
@[simp]
theorem Finset.coe_empty {α : Type u_1} :
=
@[simp]
theorem Finset.coe_eq_empty {α : Type u_1} {s : Finset α} :
s = s =
theorem Finset.isEmpty_coe_sort {α : Type u_1} {s : Finset α} :
IsEmpty { x : α // x s } s =
instance Finset.instIsEmpty {α : Type u_1} :
IsEmpty { x : α // x }
Equations
  • =
theorem Finset.eq_empty_of_isEmpty {α : Type u_1} [IsEmpty α] (s : Finset α) :
s =

A Finset for an empty type is empty.

instance Finset.instOrderBot {α : Type u_1} :
Equations
@[simp]
theorem Finset.bot_eq_empty {α : Type u_1} :
@[simp]
theorem Finset.empty_ssubset {α : Type u_1} {s : Finset α} :
s s.Nonempty
theorem Finset.Nonempty.empty_ssubset {α : Type u_1} {s : Finset α} :
s.Nonempty s

Alias of the reverse direction of Finset.empty_ssubset.

singleton #

instance Finset.instSingleton {α : Type u_1} :

{a} : Finset a is the set {a} containing a and nothing else.

This differs from insert a ∅ in that it does not require a DecidableEq instance for α.

Equations
  • Finset.instSingleton = { singleton := fun (a : α) => { val := {a}, nodup := } }
@[simp]
theorem Finset.singleton_val {α : Type u_1} (a : α) :
{a}.val = {a}
@[simp]
theorem Finset.mem_singleton {α : Type u_1} {a : α} {b : α} :
b {a} b = a
theorem Finset.eq_of_mem_singleton {α : Type u_1} {x : α} {y : α} (h : x {y}) :
x = y
theorem Finset.not_mem_singleton {α : Type u_1} {a : α} {b : α} :
a{b} a b
theorem Finset.mem_singleton_self {α : Type u_1} (a : α) :
a {a}
@[simp]
theorem Finset.val_eq_singleton_iff {α : Type u_1} {a : α} {s : Finset α} :
s.val = {a} s = {a}
@[simp]
theorem Finset.singleton_inj {α : Type u_1} {a : α} {b : α} :
{a} = {b} a = b
@[simp]
theorem Finset.singleton_nonempty {α : Type u_1} (a : α) :
{a}.Nonempty
@[simp]
theorem Finset.singleton_ne_empty {α : Type u_1} (a : α) :
{a}
theorem Finset.empty_ssubset_singleton {α : Type u_1} {a : α} :
{a}
@[simp]
theorem Finset.coe_singleton {α : Type u_1} (a : α) :
{a} = {a}
@[simp]
theorem Finset.coe_eq_singleton {α : Type u_1} {s : Finset α} {a : α} :
s = {a} s = {a}
theorem Finset.coe_subset_singleton {α : Type u_1} {s : Finset α} {a : α} :
s {a} s {a}
theorem Finset.singleton_subset_coe {α : Type u_1} {s : Finset α} {a : α} :
{a} s {a} s
theorem Finset.eq_singleton_iff_unique_mem {α : Type u_1} {s : Finset α} {a : α} :
s = {a} a s xs, x = a
theorem Finset.eq_singleton_iff_nonempty_unique_mem {α : Type u_1} {s : Finset α} {a : α} :
s = {a} s.Nonempty xs, x = a
theorem Finset.nonempty_iff_eq_singleton_default {α : Type u_1} [Unique α] {s : Finset α} :
s.Nonempty s = {default}
theorem Finset.Nonempty.eq_singleton_default {α : Type u_1} [Unique α] {s : Finset α} :
s.Nonemptys = {default}

Alias of the forward direction of Finset.nonempty_iff_eq_singleton_default.

theorem Finset.singleton_iff_unique_mem {α : Type u_1} (s : Finset α) :
(∃ (a : α), s = {a}) ∃! a : α, a s
theorem Finset.singleton_subset_set_iff {α : Type u_1} {s : Set α} {a : α} :
{a} s a s
@[simp]
theorem Finset.singleton_subset_iff {α : Type u_1} {s : Finset α} {a : α} :
{a} s a s
@[simp]
theorem Finset.subset_singleton_iff {α : Type u_1} {s : Finset α} {a : α} :
s {a} s = s = {a}
theorem Finset.singleton_subset_singleton {α : Type u_1} {a : α} {b : α} :
{a} {b} a = b
theorem Finset.Nonempty.subset_singleton_iff {α : Type u_1} {s : Finset α} {a : α} (h : s.Nonempty) :
s {a} s = {a}
theorem Finset.subset_singleton_iff' {α : Type u_1} {s : Finset α} {a : α} :
s {a} bs, b = a
@[simp]
theorem Finset.ssubset_singleton_iff {α : Type u_1} {s : Finset α} {a : α} :
s {a} s =
theorem Finset.eq_empty_of_ssubset_singleton {α : Type u_1} {s : Finset α} {x : α} (hs : s {x}) :
s =
@[reducible, inline]
abbrev Finset.Nontrivial {α : Type u_1} (s : Finset α) :

A finset is nontrivial if it has at least two elements.

Equations
  • s.Nontrivial = (↑s).Nontrivial
@[simp]
theorem Finset.not_nontrivial_empty {α : Type u_1} :
¬.Nontrivial
@[simp]
theorem Finset.not_nontrivial_singleton {α : Type u_1} {a : α} :
¬{a}.Nontrivial
theorem Finset.Nontrivial.ne_singleton {α : Type u_1} {s : Finset α} {a : α} (hs : s.Nontrivial) :
s {a}
theorem Finset.Nontrivial.exists_ne {α : Type u_1} {s : Finset α} (hs : s.Nontrivial) (a : α) :
bs, b a
theorem Finset.eq_singleton_or_nontrivial {α : Type u_1} {s : Finset α} {a : α} (ha : a s) :
s = {a} s.Nontrivial
theorem Finset.nontrivial_iff_ne_singleton {α : Type u_1} {s : Finset α} {a : α} (ha : a s) :
s.Nontrivial s {a}
theorem Finset.Nonempty.exists_eq_singleton_or_nontrivial {α : Type u_1} {s : Finset α} :
s.Nonempty(∃ (a : α), s = {a}) s.Nontrivial
instance Finset.instNontrivial {α : Type u_1} [Nonempty α] :
Equations
  • =
instance Finset.instUniqueOfIsEmpty {α : Type u_1} [IsEmpty α] :
Equations
  • Finset.instUniqueOfIsEmpty = { default := , uniq := }
instance Finset.instUniqueSubtypeMemSingleton {α : Type u_1} (i : α) :
Unique { x : α // x {i} }
Equations
@[simp]
theorem Finset.default_singleton {α : Type u_1} (i : α) :
default = i

cons #

def Finset.cons {α : Type u_1} (a : α) (s : Finset α) (h : as) :

cons a s h is the set {a} ∪ s containing a and the elements of s. It is the same as insert a s when it is defined, but unlike insert a s it does not require DecidableEq α, and the union is guaranteed to be disjoint.

Equations
@[simp]
theorem Finset.mem_cons {α : Type u_1} {s : Finset α} {a : α} {b : α} {h : as} :
b Finset.cons a s h b = a b s
theorem Finset.mem_cons_of_mem {α : Type u_1} {a : α} {b : α} {s : Finset α} {hb : bs} (ha : a s) :
a Finset.cons b s hb
theorem Finset.mem_cons_self {α : Type u_1} (a : α) (s : Finset α) {h : as} :
@[simp]
theorem Finset.cons_val {α : Type u_1} {s : Finset α} {a : α} (h : as) :
(Finset.cons a s h).val = a ::ₘ s.val
theorem Finset.forall_mem_cons {α : Type u_1} {s : Finset α} {a : α} (h : as) (p : αProp) :
(∀ xFinset.cons a s h, p x) p a xs, p x
theorem Finset.forall_of_forall_cons {α : Type u_1} {s : Finset α} {a : α} {p : αProp} {h : as} (H : xFinset.cons a s h✝, p x) (x : α) (h : x s) :
p x

Useful in proofs by induction.

@[simp]
theorem Finset.mk_cons {α : Type u_1} {a : α} {s : Multiset α} (h : (a ::ₘ s).Nodup) :
{ val := a ::ₘ s, nodup := h } = Finset.cons a { val := s, nodup := }
@[simp]
theorem Finset.cons_empty {α : Type u_1} (a : α) :
Finset.cons a = {a}
@[simp]
theorem Finset.cons_nonempty {α : Type u_1} {s : Finset α} {a : α} (h : as) :
(Finset.cons a s h).Nonempty
@[deprecated Finset.cons_nonempty]
theorem Finset.nonempty_cons {α : Type u_1} {s : Finset α} {a : α} (h : as) :
(Finset.cons a s h).Nonempty

Alias of Finset.cons_nonempty.

@[simp]
theorem Finset.cons_ne_empty {α : Type u_1} {s : Finset α} {a : α} (h : as) :
@[simp]
theorem Finset.nonempty_mk {α : Type u_1} {m : Multiset α} {hm : m.Nodup} :
{ val := m, nodup := hm }.Nonempty m 0
@[simp]
theorem Finset.coe_cons {α : Type u_1} {a : α} {s : Finset α} {h : as} :
(Finset.cons a s h) = insert a s
theorem Finset.subset_cons {α : Type u_1} {s : Finset α} {a : α} (h : as) :
theorem Finset.ssubset_cons {α : Type u_1} {s : Finset α} {a : α} (h : as) :
theorem Finset.cons_subset {α : Type u_1} {s : Finset α} {t : Finset α} {a : α} {h : as} :
Finset.cons a s h t a t s t
@[simp]
theorem Finset.cons_subset_cons {α : Type u_1} {s : Finset α} {t : Finset α} {a : α} {hs : as} {ht : at} :
Finset.cons a s hs Finset.cons a t ht s t
theorem Finset.ssubset_iff_exists_cons_subset {α : Type u_1} {s : Finset α} {t : Finset α} :
s t ∃ (a : α) (h : as), Finset.cons a s h t

disjoint #

theorem Finset.disjoint_left {α : Type u_1} {s : Finset α} {t : Finset α} :
Disjoint s t ∀ ⦃a : α⦄, a sat
theorem Finset.disjoint_right {α : Type u_1} {s : Finset α} {t : Finset α} :
Disjoint s t ∀ ⦃a : α⦄, a tas
theorem Finset.disjoint_iff_ne {α : Type u_1} {s : Finset α} {t : Finset α} :
Disjoint s t as, bt, a b
@[simp]
theorem Finset.disjoint_val {α : Type u_1} {s : Finset α} {t : Finset α} :
s.val.Disjoint t.val Disjoint s t
theorem Disjoint.forall_ne_finset {α : Type u_1} {s : Finset α} {t : Finset α} {a : α} {b : α} (h : Disjoint s t) (ha : a s) (hb : b t) :
a b
theorem Finset.not_disjoint_iff {α : Type u_1} {s : Finset α} {t : Finset α} :
¬Disjoint s t as, a t
theorem Finset.disjoint_of_subset_left {α : Type u_1} {s : Finset α} {t : Finset α} {u : Finset α} (h : s u) (d : Disjoint u t) :
theorem Finset.disjoint_of_subset_right {α : Type u_1} {s : Finset α} {t : Finset α} {u : Finset α} (h : t u) (d : Disjoint s u) :
@[simp]
theorem Finset.disjoint_empty_left {α : Type u_1} (s : Finset α) :
@[simp]
theorem Finset.disjoint_empty_right {α : Type u_1} (s : Finset α) :
@[simp]
theorem Finset.disjoint_singleton_left {α : Type u_1} {s : Finset α} {a : α} :
Disjoint {a} s as
@[simp]
theorem Finset.disjoint_singleton_right {α : Type u_1} {s : Finset α} {a : α} :
Disjoint s {a} as
theorem Finset.disjoint_singleton {α : Type u_1} {a : α} {b : α} :
Disjoint {a} {b} a b
theorem Finset.disjoint_self_iff_empty {α : Type u_1} (s : Finset α) :
@[simp]
theorem Finset.disjoint_coe {α : Type u_1} {s : Finset α} {t : Finset α} :
Disjoint s t Disjoint s t
@[simp]
theorem Finset.pairwiseDisjoint_coe {α : Type u_1} {ι : Type u_4} {s : Set ι} {f : ιFinset α} :
(s.PairwiseDisjoint fun (i : ι) => (f i)) s.PairwiseDisjoint f

disjoint union #

def Finset.disjUnion {α : Type u_1} (s : Finset α) (t : Finset α) (h : Disjoint s t) :

disjUnion s t h is the set such that a ∈ disjUnion s t h iff a ∈ s or a ∈ t. It is the same as s ∪ t, but it does not require decidable equality on the type. The hypothesis ensures that the sets are disjoint.

Equations
  • s.disjUnion t h = { val := s.val + t.val, nodup := }
@[simp]
theorem Finset.mem_disjUnion {α : Type u_4} {s : Finset α} {t : Finset α} {h : Disjoint s t} {a : α} :
a s.disjUnion t h a s a t
@[simp]
theorem Finset.coe_disjUnion {α : Type u_1} {s : Finset α} {t : Finset α} (h : Disjoint s t) :
(s.disjUnion t h) = s t
theorem Finset.disjUnion_comm {α : Type u_1} (s : Finset α) (t : Finset α) (h : Disjoint s t) :
s.disjUnion t h = t.disjUnion s
@[simp]
theorem Finset.empty_disjUnion {α : Type u_1} (t : Finset α) (h : optParam (Disjoint t) ) :
.disjUnion t h = t
@[simp]
theorem Finset.disjUnion_empty {α : Type u_1} (s : Finset α) (h : optParam (Disjoint s ) ) :
s.disjUnion h = s
theorem Finset.singleton_disjUnion {α : Type u_1} (a : α) (t : Finset α) (h : Disjoint {a} t) :
{a}.disjUnion t h = Finset.cons a t
theorem Finset.disjUnion_singleton {α : Type u_1} (s : Finset α) (a : α) (h : Disjoint s {a}) :
s.disjUnion {a} h = Finset.cons a s

insert #

instance Finset.instInsert {α : Type u_1} [DecidableEq α] :
Insert α (Finset α)

insert a s is the set {a} ∪ s containing a and the elements of s.

Equations
theorem Finset.insert_def {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
insert a s = { val := Multiset.ndinsert a s.val, nodup := }
@[simp]
theorem Finset.insert_val {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(insert a s).val = Multiset.ndinsert a s.val
theorem Finset.insert_val' {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(insert a s).val = (a ::ₘ s.val).dedup
theorem Finset.insert_val_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : as) :
(insert a s).val = a ::ₘ s.val
@[simp]
theorem Finset.mem_insert {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} :
a insert b s a = b a s
theorem Finset.mem_insert_self {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
a insert a s
theorem Finset.mem_insert_of_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (h : a s) :
a insert b s
theorem Finset.mem_of_mem_insert_of_ne {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (h : b insert a s) :
b ab s
theorem Finset.eq_of_not_mem_of_mem_insert {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (ha : b insert a s) (hb : bs) :
b = a
@[simp]
theorem Finset.insert_empty {α : Type u_1} [DecidableEq α] {a : α} :
insert a = {a}

A version of LawfulSingleton.insert_emptyc_eq that works with dsimp.

@[simp]
theorem Finset.cons_eq_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (h : as) :
Finset.cons a s h = insert a s
@[simp]
theorem Finset.coe_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(insert a s) = insert a s
theorem Finset.mem_insert_coe {α : Type u_1} [DecidableEq α] {s : Finset α} {x : α} {y : α} :
x insert y s x insert y s
Equations
  • =
@[simp]
theorem Finset.insert_eq_of_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (h : a s) :
insert a s = s
@[simp]
theorem Finset.insert_eq_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} :
insert a s = s a s
theorem Finset.insert_ne_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} :
insert a s s as
theorem Finset.pair_eq_singleton {α : Type u_1} [DecidableEq α] (a : α) :
{a, a} = {a}
theorem Finset.Insert.comm {α : Type u_1} [DecidableEq α] (a : α) (b : α) (s : Finset α) :
insert a (insert b s) = insert b (insert a s)
theorem Finset.coe_pair {α : Type u_1} [DecidableEq α] {a : α} {b : α} :
{a, b} = {a, b}
@[simp]
theorem Finset.coe_eq_pair {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} :
s = {a, b} s = {a, b}
theorem Finset.pair_comm {α : Type u_1} [DecidableEq α] (a : α) (b : α) :
{a, b} = {b, a}
theorem Finset.insert_idem {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
insert a (insert a s) = insert a s
@[simp]
theorem Finset.insert_nonempty {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(insert a s).Nonempty
@[simp]
theorem Finset.insert_ne_empty {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
instance Finset.instNonemptyElemToSetInsert {α : Type u_1} [DecidableEq α] (i : α) (s : Finset α) :
Nonempty (insert i s)
Equations
  • =
theorem Finset.ne_insert_of_not_mem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) {a : α} (h : as) :
s insert a t
theorem Finset.insert_subset_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
insert a s t a t s t
theorem Finset.insert_subset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : a t) (hs : s t) :
insert a s t
@[simp]
theorem Finset.subset_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
s insert a s
theorem Finset.insert_subset_insert {α : Type u_1} [DecidableEq α] (a : α) {s : Finset α} {t : Finset α} (h : s t) :
insert a s insert a t
@[simp]
theorem Finset.insert_subset_insert_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : as) :
insert a s insert a t s t
theorem Finset.insert_inj {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (ha : as) :
insert a s = insert b s a = b
theorem Finset.insert_inj_on {α : Type u_1} [DecidableEq α] (s : Finset α) :
Set.InjOn (fun (a : α) => insert a s) (↑s)
theorem Finset.ssubset_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t as, insert a s t
theorem Finset.ssubset_insert {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (h : as) :
s insert a s
theorem Finset.cons_induction {α : Type u_4} {p : Finset αProp} (empty : p ) (cons : ∀ (a : α) (s : Finset α) (h : as), p sp (Finset.cons a s h)) (s : Finset α) :
p s
theorem Finset.cons_induction_on {α : Type u_4} {p : Finset αProp} (s : Finset α) (h₁ : p ) (h₂ : ∀ ⦃a : α⦄ {s : Finset α} (h : as), p sp (Finset.cons a s h)) :
p s
theorem Finset.induction {α : Type u_4} {p : Finset αProp} [DecidableEq α] (empty : p ) (insert : ∀ ⦃a : α⦄ {s : Finset α}, asp sp (Insert.insert a s)) (s : Finset α) :
p s
theorem Finset.induction_on {α : Type u_4} {p : Finset αProp} [DecidableEq α] (s : Finset α) (empty : p ) (insert : ∀ ⦃a : α⦄ {s : Finset α}, asp sp (Insert.insert a s)) :
p s

To prove a proposition about an arbitrary Finset α, it suffices to prove it for the empty Finset, and to show that if it holds for some Finset α, then it holds for the Finset obtained by inserting a new element.

theorem Finset.induction_on' {α : Type u_4} {p : Finset αProp} [DecidableEq α] (S : Finset α) (h₁ : p ) (h₂ : ∀ {a : α} {s : Finset α}, a Ss Sasp sp (insert a s)) :
p S

To prove a proposition about S : Finset α, it suffices to prove it for the empty Finset, and to show that if it holds for some Finset α ⊆ S, then it holds for the Finset obtained by inserting a new element of S.

theorem Finset.Nonempty.cons_induction {α : Type u_4} {p : (s : Finset α) → s.NonemptyProp} (singleton : ∀ (a : α), p {a} ) (cons : ∀ (a : α) (s : Finset α) (h : as) (hs : s.Nonempty), p s hsp (Finset.cons a s h) ) {s : Finset α} (hs : s.Nonempty) :
p s hs

To prove a proposition about a nonempty s : Finset α, it suffices to show it holds for all singletons and that if it holds for nonempty t : Finset α, then it also holds for the Finset obtained by inserting an element in t.

theorem Finset.Nonempty.exists_cons_eq {α : Type u_4} {s : Finset α} (hs : s.Nonempty) :
∃ (t : Finset α) (a : α) (ha : at), Finset.cons a t ha = s
def Finset.subtypeInsertEquivOption {α : Type u_1} [DecidableEq α] {t : Finset α} {x : α} (h : xt) :
{ i : α // i insert x t } Option { i : α // i t }

Inserting an element to a finite set is equivalent to the option type.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Finset.disjoint_insert_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
Disjoint (insert a s) t at Disjoint s t
@[simp]
theorem Finset.disjoint_insert_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
Disjoint s (insert a t) as Disjoint s t

Lattice structure #

instance Finset.instUnion {α : Type u_1} [DecidableEq α] :

s ∪ t is the set such that a ∈ s ∪ t iff a ∈ s or a ∈ t.

Equations
  • Finset.instUnion = { union := fun (s t : Finset α) => { val := s.val.ndunion t.val, nodup := } }
instance Finset.instInter {α : Type u_1} [DecidableEq α] :

s ∩ t is the set such that a ∈ s ∩ t iff a ∈ s and a ∈ t.

Equations
  • Finset.instInter = { inter := fun (s t : Finset α) => { val := s.val.ndinter t.val, nodup := } }
instance Finset.instLattice {α : Type u_1} [DecidableEq α] :
Equations
@[simp]
theorem Finset.sup_eq_union {α : Type u_1} [DecidableEq α] :
Sup.sup = Union.union
@[simp]
theorem Finset.inf_eq_inter {α : Type u_1} [DecidableEq α] :
Inf.inf = Inter.inter
theorem Finset.disjoint_iff_inter_eq_empty {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
Disjoint s t s t =
instance Finset.decidableDisjoint {α : Type u_1} [DecidableEq α] (U : Finset α) (V : Finset α) :
Equations

union #

theorem Finset.union_val_nd {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s t).val = s.val.ndunion t.val
@[simp]
theorem Finset.union_val {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s t).val = s.val t.val
@[simp]
theorem Finset.mem_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
a s t a s a t
@[simp]
theorem Finset.disjUnion_eq_union {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (h : Disjoint s t) :
s.disjUnion t h = s t
theorem Finset.mem_union_left {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (t : Finset α) (h : a s) :
a s t
theorem Finset.mem_union_right {α : Type u_1} [DecidableEq α] {t : Finset α} {a : α} (s : Finset α) (h : a t) :
a s t
theorem Finset.forall_mem_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {p : αProp} :
(∀ as t, p a) (∀ as, p a) at, p a
theorem Finset.not_mem_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
as t as at
@[simp]
theorem Finset.coe_union {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ s₂) = s₁ s₂
theorem Finset.union_subset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (hs : s u) :
t us t u
theorem Finset.subset_union_left {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₁ s₂
theorem Finset.subset_union_right {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} :
s₂ s₁ s₂
theorem Finset.union_subset_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} {v : Finset α} (hsu : s u) (htv : t v) :
s t u v
theorem Finset.union_subset_union_left {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {t : Finset α} (h : s₁ s₂) :
s₁ t s₂ t
theorem Finset.union_subset_union_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t₁ : Finset α} {t₂ : Finset α} (h : t₁ t₂) :
s t₁ s t₂
theorem Finset.union_comm {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
s₁ s₂ = s₂ s₁
instance Finset.instCommutativeUnion {α : Type u_1} [DecidableEq α] :
Std.Commutative fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
@[simp]
theorem Finset.union_assoc {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) (s₃ : Finset α) :
s₁ s₂ s₃ = s₁ (s₂ s₃)
instance Finset.instAssociativeUnion {α : Type u_1} [DecidableEq α] :
Std.Associative fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
@[simp]
theorem Finset.union_idempotent {α : Type u_1} [DecidableEq α] (s : Finset α) :
s s = s
instance Finset.instIdempotentOpUnion {α : Type u_1} [DecidableEq α] :
Std.IdempotentOp fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
theorem Finset.union_subset_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (h : s t u) :
s u
theorem Finset.union_subset_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (h : s t u) :
t u
theorem Finset.union_left_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t u) = t (s u)
theorem Finset.union_right_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = s u t
theorem Finset.union_self {α : Type u_1} [DecidableEq α] (s : Finset α) :
s s = s
@[simp]
theorem Finset.union_empty {α : Type u_1} [DecidableEq α] (s : Finset α) :
s = s
@[simp]
theorem Finset.empty_union {α : Type u_1} [DecidableEq α] (s : Finset α) :
s = s
theorem Finset.Nonempty.inl {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s.Nonempty) :
(s t).Nonempty
theorem Finset.Nonempty.inr {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : t.Nonempty) :
(s t).Nonempty
theorem Finset.insert_eq {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
insert a s = {a} s
@[simp]
theorem Finset.insert_union {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (t : Finset α) :
insert a s t = insert a (s t)
@[simp]
theorem Finset.union_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (t : Finset α) :
s insert a t = insert a (s t)
theorem Finset.insert_union_distrib {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (t : Finset α) :
insert a (s t) = insert a s insert a t
@[simp]
theorem Finset.union_eq_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t = s t s
@[simp]
theorem Finset.left_eq_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s = s t t s
@[simp]
theorem Finset.union_eq_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t = t s t
@[simp]
theorem Finset.right_eq_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s = t s t s
theorem Finset.union_congr_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (ht : t s u) (hu : u s t) :
s t = s u
theorem Finset.union_congr_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (hs : s t u) (ht : t s u) :
s u = t u
theorem Finset.union_eq_union_iff_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s t = s u t s u u s t
theorem Finset.union_eq_union_iff_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s u = t u s t u t s u
@[simp]
theorem Finset.disjoint_union_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
@[simp]
theorem Finset.disjoint_union_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
theorem Finset.induction_on_union {α : Type u_1} [DecidableEq α] (P : Finset αFinset αProp) (symm : ∀ {a b : Finset α}, P a bP b a) (empty_right : ∀ {a : Finset α}, P a ) (singletons : ∀ {a b : α}, P {a} {b}) (union_of : ∀ {a b c : Finset α}, P a cP b cP (a b) c) (a : Finset α) (b : Finset α) :
P a b

To prove a relation on pairs of Finset X, it suffices to show that it is

  • symmetric,
  • it holds when one of the Finsets is empty,
  • it holds for pairs of singletons,
  • if it holds for [a, c] and for [b, c], then it holds for [a ∪ b, c].

inter #

theorem Finset.inter_val_nd {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ s₂).val = s₁.val.ndinter s₂.val
@[simp]
theorem Finset.inter_val {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ s₂).val = s₁.val s₂.val
@[simp]
theorem Finset.mem_inter {α : Type u_1} [DecidableEq α] {a : α} {s₁ : Finset α} {s₂ : Finset α} :
a s₁ s₂ a s₁ a s₂
theorem Finset.mem_of_mem_inter_left {α : Type u_1} [DecidableEq α] {a : α} {s₁ : Finset α} {s₂ : Finset α} (h : a s₁ s₂) :
a s₁
theorem Finset.mem_of_mem_inter_right {α : Type u_1} [DecidableEq α] {a : α} {s₁ : Finset α} {s₂ : Finset α} (h : a s₁ s₂) :
a s₂
theorem Finset.mem_inter_of_mem {α : Type u_1} [DecidableEq α] {a : α} {s₁ : Finset α} {s₂ : Finset α} :
a s₁a s₂a s₁ s₂
theorem Finset.inter_subset_left {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ s₁
theorem Finset.inter_subset_right {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} :
s₁ s₂ s₂
theorem Finset.subset_inter {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {u : Finset α} :
s₁ s₂s₁ us₁ s₂ u
@[simp]
theorem Finset.coe_inter {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ s₂) = s₁ s₂
@[simp]
theorem Finset.union_inter_cancel_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(s t) s = s
@[simp]
theorem Finset.union_inter_cancel_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(s t) t = t
theorem Finset.inter_comm {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
s₁ s₂ = s₂ s₁
@[simp]
theorem Finset.inter_assoc {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) (s₃ : Finset α) :
s₁ s₂ s₃ = s₁ (s₂ s₃)
theorem Finset.inter_left_comm {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) (s₃ : Finset α) :
s₁ (s₂ s₃) = s₂ (s₁ s₃)
theorem Finset.inter_right_comm {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) (s₃ : Finset α) :
s₁ s₂ s₃ = s₁ s₃ s₂
@[simp]
theorem Finset.inter_self {α : Type u_1} [DecidableEq α] (s : Finset α) :
s s = s
@[simp]
theorem Finset.inter_empty {α : Type u_1} [DecidableEq α] (s : Finset α) :
@[simp]
theorem Finset.empty_inter {α : Type u_1} [DecidableEq α] (s : Finset α) :
@[simp]
theorem Finset.inter_union_self {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s (t s) = s
@[simp]
theorem Finset.insert_inter_of_mem {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {a : α} (h : a s₂) :
insert a s₁ s₂ = insert a (s₁ s₂)
@[simp]
theorem Finset.inter_insert_of_mem {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {a : α} (h : a s₁) :
s₁ insert a s₂ = insert a (s₁ s₂)
@[simp]
theorem Finset.insert_inter_of_not_mem {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {a : α} (h : as₂) :
insert a s₁ s₂ = s₁ s₂
@[simp]
theorem Finset.inter_insert_of_not_mem {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} {a : α} (h : as₁) :
s₁ insert a s₂ = s₁ s₂
@[simp]
theorem Finset.singleton_inter_of_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (H : a s) :
{a} s = {a}
@[simp]
theorem Finset.singleton_inter_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (H : as) :
{a} s =
theorem Finset.singleton_inter {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} :
{a} s = if a s then {a} else
@[simp]
theorem Finset.inter_singleton_of_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : a s) :
s {a} = {a}
@[simp]
theorem Finset.inter_singleton_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : as) :
s {a} =
theorem Finset.inter_singleton {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} :
s {a} = if a s then {a} else
theorem Finset.inter_subset_inter {α : Type u_1} [DecidableEq α] {x : Finset α} {y : Finset α} {s : Finset α} {t : Finset α} (h : x y) (h' : s t) :
x s y t
theorem Finset.inter_subset_inter_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (h : t u) :
s t s u
theorem Finset.inter_subset_inter_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (h : s t) :
s u t u
theorem Finset.inter_subset_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t s t
Equations
@[simp]
theorem Finset.union_left_idem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s (s t) = s t
theorem Finset.union_right_idem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s t t = s t
@[simp]
theorem Finset.inter_left_idem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s (s t) = s t
theorem Finset.inter_right_idem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s t t = s t
theorem Finset.inter_union_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t u) = s t s u
theorem Finset.union_inter_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
(s t) u = s u t u
theorem Finset.union_inter_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = (s t) (s u)
theorem Finset.inter_union_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = (s u) (t u)
@[deprecated Finset.inter_union_distrib_left]
theorem Finset.inter_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t u) = s t s u

Alias of Finset.inter_union_distrib_left.

@[deprecated Finset.union_inter_distrib_right]
theorem Finset.inter_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
(s t) u = s u t u

Alias of Finset.union_inter_distrib_right.

@[deprecated Finset.union_inter_distrib_left]
theorem Finset.union_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = (s t) (s u)

Alias of Finset.union_inter_distrib_left.

@[deprecated Finset.inter_union_distrib_right]
theorem Finset.union_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = (s u) (t u)

Alias of Finset.inter_union_distrib_right.

theorem Finset.union_union_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t u) = s t (s u)
theorem Finset.union_union_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = s u (t u)
theorem Finset.inter_inter_distrib_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t u) = s t (s u)
theorem Finset.inter_inter_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s t u = s u (t u)
theorem Finset.union_union_union_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) (v : Finset α) :
s t (u v) = s u (t v)
theorem Finset.inter_inter_inter_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) (v : Finset α) :
s t (u v) = s u (t v)
theorem Finset.union_eq_empty {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t = s = t =
theorem Finset.union_subset_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s t u s u t u
theorem Finset.subset_inter_iff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s t u s t s u
@[simp]
theorem Finset.inter_eq_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t = s s t
@[simp]
theorem Finset.inter_eq_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
t s = s s t
theorem Finset.inter_congr_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (ht : s u t) (hu : s t u) :
s t = s u
theorem Finset.inter_congr_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (hs : t u s) (ht : s u t) :
s u = t u
theorem Finset.inter_eq_inter_iff_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s t = s u s u t s t u
theorem Finset.inter_eq_inter_iff_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s u = t u t u s s u t
theorem Finset.ite_subset_union {α : Type u_1} [DecidableEq α] (s : Finset α) (s' : Finset α) (P : Prop) [Decidable P] :
(if P then s else s') s s'
theorem Finset.inter_subset_ite {α : Type u_1} [DecidableEq α] (s : Finset α) (s' : Finset α) (P : Prop) [Decidable P] :
s s' if P then s else s'
theorem Finset.not_disjoint_iff_nonempty_inter {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
¬Disjoint s t (s t).Nonempty
theorem Finset.Nonempty.not_disjoint {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(s t).Nonempty¬Disjoint s t

Alias of the reverse direction of Finset.not_disjoint_iff_nonempty_inter.

theorem Finset.disjoint_or_nonempty_inter {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Disjoint s t (s t).Nonempty
instance Finset.isDirected_le {α : Type u_1} :
IsDirected (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =
instance Finset.isDirected_subset {α : Type u_1} :
IsDirected (Finset α) fun (x1 x2 : Finset α) => x1 x2
Equations
  • =

erase #

def Finset.erase {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :

erase s a is the set s - {a}, that is, the elements of s which are not equal to a.

Equations
  • s.erase a = { val := s.val.erase a, nodup := }
@[simp]
theorem Finset.erase_val {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :
(s.erase a).val = s.val.erase a
@[simp]
theorem Finset.mem_erase {α : Type u_1} [DecidableEq α] {a : α} {b : α} {s : Finset α} :
a s.erase b a b a s
theorem Finset.not_mem_erase {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
as.erase a
@[simp]
theorem Finset.erase_empty {α : Type u_1} [DecidableEq α] (a : α) :
.erase a =
theorem Finset.Nontrivial.erase_nonempty {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (hs : s.Nontrivial) :
(s.erase a).Nonempty
@[simp]
theorem Finset.erase_nonempty {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : a s) :
(s.erase a).Nonempty s.Nontrivial
@[simp]
theorem Finset.erase_singleton {α : Type u_1} [DecidableEq α] (a : α) :
{a}.erase a =
theorem Finset.ne_of_mem_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} :
b s.erase ab a
theorem Finset.mem_of_mem_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} :
b s.erase ab s
theorem Finset.mem_erase_of_ne_of_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} :
a ba sa s.erase b
theorem Finset.eq_of_mem_of_not_mem_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (hs : b s) (hsa : bs.erase a) :
b = a

An element of s that is not an element of erase s a must bea.

@[simp]
theorem Finset.erase_eq_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : as) :
s.erase a = s
@[simp]
theorem Finset.erase_eq_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} :
s.erase a = s as
@[simp]
theorem Finset.erase_insert_eq_erase {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :
(insert a s).erase a = s.erase a
theorem Finset.erase_insert {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : as) :
(insert a s).erase a = s
theorem Finset.erase_insert_of_ne {α : Type u_1} [DecidableEq α] {a : α} {b : α} {s : Finset α} (h : a b) :
(insert a s).erase b = insert a (s.erase b)
theorem Finset.erase_cons_of_ne {α : Type u_1} [DecidableEq α] {a : α} {b : α} {s : Finset α} (ha : as) (hb : a b) :
(Finset.cons a s ha).erase b = Finset.cons a (s.erase b)
@[simp]
theorem Finset.insert_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (h : a s) :
insert a (s.erase a) = s
theorem Finset.erase_eq_iff_eq_insert {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (hs : a s) (ht : at) :
s.erase a = t s = insert a t
theorem Finset.insert_erase_invOn {α : Type u_1} [DecidableEq α] {a : α} :
Set.InvOn (insert a) (fun (s : Finset α) => s.erase a) {s : Finset α | a s} {s : Finset α | as}
theorem Finset.erase_subset_erase {α : Type u_1} [DecidableEq α] (a : α) {s : Finset α} {t : Finset α} (h : s t) :
s.erase a t.erase a
theorem Finset.erase_subset {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
s.erase a s
theorem Finset.subset_erase {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} {t : Finset α} :
s t.erase a s t as
@[simp]
theorem Finset.coe_erase {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(s.erase a) = s \ {a}
theorem Finset.erase_ssubset {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : a s) :
s.erase a s
theorem Finset.ssubset_iff_exists_subset_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t at, s t.erase a
theorem Finset.erase_ssubset_insert {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :
s.erase a insert a s
theorem Finset.erase_ne_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} :
s.erase a s a s
theorem Finset.erase_cons {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (h : as) :
(Finset.cons a s h).erase a = s
theorem Finset.erase_idem {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} :
(s.erase a).erase a = s.erase a
theorem Finset.erase_right_comm {α : Type u_1} [DecidableEq α] {a : α} {b : α} {s : Finset α} :
(s.erase a).erase b = (s.erase b).erase a
theorem Finset.subset_insert_iff {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} {t : Finset α} :
s insert a t s.erase a t
theorem Finset.erase_insert_subset {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
(insert a s).erase a s
theorem Finset.insert_erase_subset {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
s insert a (s.erase a)
theorem Finset.subset_insert_iff_of_not_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (h : as) :
s insert a t s t
theorem Finset.erase_subset_iff_of_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (h : a t) :
s.erase a t s t
theorem Finset.erase_inj {α : Type u_1} [DecidableEq α] {x : α} {y : α} (s : Finset α) (hx : x s) :
s.erase x = s.erase y x = y
theorem Finset.erase_injOn {α : Type u_1} [DecidableEq α] (s : Finset α) :
Set.InjOn s.erase s
theorem Finset.erase_injOn' {α : Type u_1} [DecidableEq α] (a : α) :
Set.InjOn (fun (s : Finset α) => s.erase a) {s : Finset α | a s}
theorem Finset.Nontrivial.exists_cons_eq {α : Type u_1} {s : Finset α} (hs : s.Nontrivial) :
∃ (t : Finset α) (a : α) (ha : at) (b : α) (hb : bt) (hab : ¬a = b), Finset.cons a (Finset.cons b t hb) = s

sdiff #

instance Finset.instSDiff {α : Type u_1} [DecidableEq α] :

s \ t is the set consisting of the elements of s that are not in t.

Equations
  • Finset.instSDiff = { sdiff := fun (s₁ s₂ : Finset α) => { val := s₁.val - s₂.val, nodup := } }
@[simp]
theorem Finset.sdiff_val {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ \ s₂).val = s₁.val - s₂.val
@[simp]
theorem Finset.mem_sdiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
a s \ t a s at
@[simp]
theorem Finset.inter_sdiff_self {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
s₁ (s₂ \ s₁) =
Equations
theorem Finset.not_mem_sdiff_of_mem_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (h : a t) :
as \ t
theorem Finset.not_mem_sdiff_of_not_mem_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (h : as) :
as \ t
theorem Finset.union_sdiff_of_subset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :
s t \ s = t
theorem Finset.sdiff_union_of_subset {α : Type u_1} [DecidableEq α] {s₁ : Finset α} {s₂ : Finset α} (h : s₁ s₂) :
s₂ \ s₁ s₁ = s₂
theorem Finset.inter_sdiff_assoc {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
(s t) \ u = s (t \ u)
@[deprecated Finset.inter_sdiff_assoc]
theorem Finset.inter_sdiff {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s (t \ u) = (s t) \ u
@[simp]
theorem Finset.sdiff_inter_self {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
s₂ \ s₁ s₁ =
theorem Finset.sdiff_self {α : Type u_1} [DecidableEq α] (s₁ : Finset α) :
s₁ \ s₁ =
theorem Finset.sdiff_inter_distrib_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
s \ (t u) = s \ t s \ u
@[simp]
theorem Finset.sdiff_inter_self_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s \ (s t) = s \ t
@[simp]
theorem Finset.sdiff_inter_self_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s \ (t s) = s \ t
@[simp]
theorem Finset.sdiff_empty {α : Type u_1} [DecidableEq α] {s : Finset α} :
s \ = s
theorem Finset.sdiff_subset_sdiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} {v : Finset α} (hst : s t) (hvu : v u) :
s \ u t \ v
@[simp]
theorem Finset.coe_sdiff {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
(s₁ \ s₂) = s₁ \ s₂
@[simp]
theorem Finset.union_sdiff_self_eq_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t \ s = s t
@[simp]
theorem Finset.sdiff_union_self_eq_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s \ t t = s t
theorem Finset.union_sdiff_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s t) \ s = t \ s
theorem Finset.union_sdiff_right {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s t) \ t = s \ t
theorem Finset.union_sdiff_cancel_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : Disjoint s t) :
(s t) \ s = t
theorem Finset.union_sdiff_cancel_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : Disjoint s t) :
(s t) \ t = s
theorem Finset.union_sdiff_symm {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s t \ s = t s \ t
theorem Finset.sdiff_union_inter {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s \ t s t = s
theorem Finset.sdiff_idem {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s \ t) \ t = s \ t
theorem Finset.subset_sdiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} :
s t \ u s t Disjoint s u
@[simp]
theorem Finset.sdiff_eq_empty_iff_subset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s \ t = s t
theorem Finset.sdiff_nonempty {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(s \ t).Nonempty ¬s t
@[simp]
theorem Finset.empty_sdiff {α : Type u_1} [DecidableEq α] (s : Finset α) :
theorem Finset.insert_sdiff_of_not_mem {α : Type u_1} [DecidableEq α] (s : Finset α) {t : Finset α} {x : α} (h : xt) :
insert x s \ t = insert x (s \ t)
theorem Finset.insert_sdiff_of_mem {α : Type u_1} [DecidableEq α] {t : Finset α} (s : Finset α) {x : α} (h : x t) :
insert x s \ t = s \ t
@[simp]
theorem Finset.insert_sdiff_cancel {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : as) :
insert a s \ s = {a}
@[simp]
theorem Finset.insert_sdiff_insert {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (x : α) :
insert x s \ insert x t = s \ insert x t
theorem Finset.insert_sdiff_insert' {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (hab : a b) (ha : as) :
insert a s \ insert b s = {a}
theorem Finset.erase_sdiff_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (hab : a b) (hb : b s) :
s.erase a \ s.erase b = {b}
theorem Finset.cons_sdiff_cons {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} {b : α} (hab : a b) (ha : as) (hb : bs) :
Finset.cons a s ha \ Finset.cons b s hb = {a}
theorem Finset.sdiff_insert_of_not_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {x : α} (h : xs) (t : Finset α) :
s \ insert x t = s \ t
@[simp]
theorem Finset.sdiff_subset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s \ t s
theorem Finset.sdiff_ssubset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : t s) (ht : t.Nonempty) :
s \ t s
theorem Finset.union_sdiff_distrib {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) (t : Finset α) :
(s₁ s₂) \ t = s₁ \ t s₂ \ t
theorem Finset.sdiff_union_distrib {α : Type u_1} [DecidableEq α] (s : Finset α) (t₁ : Finset α) (t₂ : Finset α) :
s \ (t₁ t₂) = s \ t₁ (s \ t₂)
theorem Finset.union_sdiff_self {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
(s t) \ t = s \ t
theorem Finset.sdiff_singleton_eq_erase {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
s \ {a} = s.erase a
theorem Finset.erase_eq {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :
s.erase a = s \ {a}
theorem Finset.disjoint_erase_comm {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
Disjoint (s.erase a) t Disjoint s (t.erase a)
theorem Finset.disjoint_insert_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : at) :
Disjoint (s.erase a) (insert a t) Disjoint s t
theorem Finset.disjoint_erase_insert {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : as) :
Disjoint (insert a s) (t.erase a) Disjoint s t
theorem Finset.disjoint_of_erase_left {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : at) (hst : Disjoint (s.erase a) t) :
theorem Finset.disjoint_of_erase_right {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (ha : as) (hst : Disjoint s (t.erase a)) :
theorem Finset.inter_erase {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (t : Finset α) :
s t.erase a = (s t).erase a
@[simp]
theorem Finset.erase_inter {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (t : Finset α) :
s.erase a t = (s t).erase a
theorem Finset.erase_sdiff_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
s.erase a \ t = (s \ t).erase a
theorem Finset.insert_union_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
insert a s t = s insert a t
theorem Finset.erase_inter_comm {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
s.erase a t = s t.erase a
theorem Finset.erase_union_distrib {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
(s t).erase a = s.erase a t.erase a
theorem Finset.insert_inter_distrib {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
insert a (s t) = insert a s insert a t
theorem Finset.erase_sdiff_distrib {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (a : α) :
(s \ t).erase a = s.erase a \ t.erase a
theorem Finset.erase_union_of_mem {α : Type u_1} [DecidableEq α] {t : Finset α} {a : α} (ha : a t) (s : Finset α) :
s.erase a t = s t
theorem Finset.union_erase_of_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : a s) (t : Finset α) :
s t.erase a = s t
@[simp, deprecated Finset.erase_eq_of_not_mem]
theorem Finset.sdiff_singleton_eq_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : as) :
s \ {a} = s
theorem Finset.Nontrivial.sdiff_singleton_nonempty {α : Type u_1} [DecidableEq α] {c : α} {s : Finset α} (hS : s.Nontrivial) :
(s \ {c}).Nonempty
theorem Finset.sdiff_sdiff_left' {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (u : Finset α) :
(s \ t) \ u = s \ t (s \ u)
theorem Finset.sdiff_union_sdiff_cancel {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (hts : t s) (hut : u t) :
s \ t t \ u = s \ u
theorem Finset.sdiff_union_erase_cancel {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (hts : t s) (ha : a t) :
s \ t t.erase a = s.erase a
theorem Finset.sdiff_sdiff_eq_sdiff_union {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {u : Finset α} (h : u s) :
s \ (t \ u) = s \ t u
theorem Finset.sdiff_insert {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (x : α) :
s \ insert x t = (s \ t).erase x
theorem Finset.sdiff_insert_insert_of_mem_of_not_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {x : α} (hxs : x s) (hxt : xt) :
insert x (s \ insert x t) = s \ t
theorem Finset.sdiff_erase {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} (h : a s) :
s \ t.erase a = insert a (s \ t)
theorem Finset.sdiff_erase_self {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : a s) :
s \ s.erase a = {a}
theorem Finset.sdiff_sdiff_self_left {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s \ (s \ t) = s t
theorem Finset.sdiff_sdiff_eq_self {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : t s) :
s \ (s \ t) = t
theorem Finset.sdiff_eq_sdiff_iff_inter_eq_inter {α : Type u_1} [DecidableEq α] {s : Finset α} {t₁ : Finset α} {t₂ : Finset α} :
s \ t₁ = s \ t₂ s t₁ = s t₂
theorem Finset.union_eq_sdiff_union_sdiff_union_inter {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
s t = s \ t t \ s s t
theorem Finset.erase_eq_empty_iff {α : Type u_1} [DecidableEq α] (s : Finset α) (a : α) :
s.erase a = s = s = {a}
theorem Finset.sdiff_disjoint {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
Disjoint (t \ s) s
theorem Finset.disjoint_sdiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
Disjoint s (t \ s)
theorem Finset.disjoint_sdiff_inter {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Disjoint (s \ t) (s t)
theorem Finset.sdiff_eq_self_iff_disjoint {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s \ t = s Disjoint s t
@[deprecated Finset.sdiff_eq_self_iff_disjoint]
theorem Finset.sdiff_eq_self {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
s \ t = s Disjoint s t

Alias of Finset.sdiff_eq_self_iff_disjoint.

theorem Finset.sdiff_eq_self_of_disjoint {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : Disjoint s t) :
s \ t = s

Symmetric difference #

theorem Finset.mem_symmDiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} {a : α} :
a symmDiff s t a s at a t as
@[simp]
theorem Finset.coe_symmDiff {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(symmDiff s t) = symmDiff s t
@[simp]
theorem Finset.symmDiff_eq_empty {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
symmDiff s t = s = t
@[simp]
theorem Finset.symmDiff_nonempty {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} :
(symmDiff s t).Nonempty s t

attach #

def Finset.attach {α : Type u_1} (s : Finset α) :
Finset { x : α // x s }

attach s takes the elements of s and forms a new set of elements of the subtype {x // x ∈ s}.

Equations
  • s.attach = { val := s.val.attach, nodup := }
theorem Finset.sizeOf_lt_sizeOf_of_mem {α : Type u_1} [SizeOf α] {x : α} {s : Finset α} (hx : x s) :
@[simp]
theorem Finset.attach_val {α : Type u_1} (s : Finset α) :
s.attach.val = s.val.attach
@[simp]
theorem Finset.mem_attach {α : Type u_1} (s : Finset α) (x : { x : α // x s }) :
x s.attach
@[simp]
theorem Finset.attach_empty {α : Type u_1} :
.attach =
@[simp]
theorem Finset.attach_nonempty_iff {α : Type u_1} {s : Finset α} :
s.attach.Nonempty s.Nonempty
theorem Finset.Nonempty.attach {α : Type u_1} {s : Finset α} :
s.Nonemptys.attach.Nonempty

Alias of the reverse direction of Finset.attach_nonempty_iff.

@[simp]
theorem Finset.attach_eq_empty_iff {α : Type u_1} {s : Finset α} :
s.attach = s =
instance Finset.decidableDforallFinset {α : Type u_1} {s : Finset α} {p : (a : α) → a sProp} [_hp : (a : α) → (h : a s) → Decidable (p a h)] :
Decidable (∀ (a : α) (h : a s), p a h)
Equations
  • Finset.decidableDforallFinset = Multiset.decidableDforallMultiset
instance Finset.instDecidableRelSubset {α : Type u_1} [DecidableEq α] :
DecidableRel fun (x1 x2 : Finset α) => x1 x2
Equations
  • x✝.instDecidableRelSubset x = Finset.decidableDforallFinset
instance Finset.instDecidableRelSSubset {α : Type u_1} [DecidableEq α] :
DecidableRel fun (x1 x2 : Finset α) => x1 x2
Equations
  • x✝.instDecidableRelSSubset x = instDecidableAnd
instance Finset.instDecidableLE {α : Type u_1} [DecidableEq α] :
DecidableRel fun (x1 x2 : Finset α) => x1 x2
Equations
  • Finset.instDecidableLE = Finset.instDecidableRelSubset
instance Finset.instDecidableLT {α : Type u_1} [DecidableEq α] :
DecidableRel fun (x1 x2 : Finset α) => x1 < x2
Equations
  • Finset.instDecidableLT = Finset.instDecidableRelSSubset
instance Finset.decidableDExistsFinset {α : Type u_1} {s : Finset α} {p : (a : α) → a sProp} [_hp : (a : α) → (h : a s) → Decidable (p a h)] :
Decidable (∃ (a : α) (h : a s), p a h)
Equations
  • Finset.decidableDExistsFinset = Multiset.decidableDexistsMultiset
instance Finset.decidableExistsAndFinset {α : Type u_1} {s : Finset α} {p : αProp} [_hp : (a : α) → Decidable (p a)] :
Decidable (∃ as, p a)
Equations
instance Finset.decidableExistsAndFinsetCoe {α : Type u_1} {s : Finset α} {p : αProp} [DecidablePred p] :
Decidable (∃ as, p a)
Equations
  • Finset.decidableExistsAndFinsetCoe = Finset.decidableExistsAndFinset
instance Finset.decidableEqPiFinset {α : Type u_1} {s : Finset α} {β : αType u_4} [_h : (a : α) → DecidableEq (β a)] :
DecidableEq ((a : α) → a sβ a)

decidable equality for functions whose domain is bounded by finsets

Equations
  • Finset.decidableEqPiFinset = Multiset.decidableEqPiMultiset

filter #

def Finset.filter {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) :

Finset.filter p s is the set of elements of s that satisfy p.

For example, one can use s.filter (· ∈ t) to get the intersection of s with t : Set α as a Finset α (when a DecidablePred (· ∈ t) instance is available).

Equations

Return true if expectedType? is some (Finset ?α), throws throwUnsupportedSyntax if it is some (Set ?α), and returns false otherwise.

Equations

Elaborate set builder notation for Finset.

{x ∈ s | p x} is elaborated as Finset.filter (fun x ↦ p x) s if either the expected type is Finset or the expected type is not Set and s has expected type Finset.

See also

  • Data.Set.Defs for the Set builder notation elaborator that this elaborator partly overrides.
  • Data.Fintype.Basic for the Finset builder notation elaborator handling syntax of the form {x | p x}, {x : α | p x}, {x ∉ s | p x}, {x ≠ a | p x}.
  • Order.LocallyFinite.Basic for the Finset builder notation elaborator handling syntax of the form {x ≤ a | p x}, {x ≥ a | p x}, {x < a | p x}, {x > a | p x}.

TODO: Write a delaborator

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Finset.filter_val {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) :
(Finset.filter p s).val = Multiset.filter p s.val
@[simp]
theorem Finset.filter_subset {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) :
@[simp]
theorem Finset.mem_filter {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} {a : α} :
a Finset.filter p s a s p a
theorem Finset.mem_of_mem_filter {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} (x : α) (h : x Finset.filter p s) :
x s
theorem Finset.filter_ssubset {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} :
Finset.filter p s s xs, ¬p x
theorem Finset.filter_filter {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] (s : Finset α) :
Finset.filter q (Finset.filter p s) = Finset.filter (fun (a : α) => p a q a) s
theorem Finset.filter_comm {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] (s : Finset α) :
theorem Finset.filter_congr_decidable {α : Type u_1} (s : Finset α) (p : αProp) (h : DecidablePred p) [DecidablePred p] :
@[simp]
theorem Finset.filter_True {α : Type u_1} {h : DecidablePred fun (x : α) => True} (s : Finset α) :
Finset.filter (fun (x : α) => True) s = s
@[simp]
theorem Finset.filter_False {α : Type u_1} {h : DecidablePred fun (x : α) => False} (s : Finset α) :
Finset.filter (fun (x : α) => False) s =
theorem Finset.filter_eq_self {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} :
Finset.filter p s = s xs, p x
theorem Finset.filter_eq_empty_iff {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} :
Finset.filter p s = ∀ ⦃x : α⦄, x s¬p x
theorem Finset.filter_nonempty_iff {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} :
(Finset.filter p s).Nonempty as, p a
theorem Finset.filter_true_of_mem {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} (h : xs, p x) :

If all elements of a Finset satisfy the predicate p, s.filter p is s.

theorem Finset.filter_false_of_mem {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} (h : xs, ¬p x) :

If all elements of a Finset fail to satisfy the predicate p, s.filter p is .

@[simp]
theorem Finset.filter_const {α : Type u_1} (p : Prop) [Decidable p] (s : Finset α) :
Finset.filter (fun (_a : α) => p) s = if p then s else
theorem Finset.filter_congr {α : Type u_1} {p : αProp} {q : αProp} [DecidablePred p] [DecidablePred q] {s : Finset α} (H : xs, p x q x) :
@[simp]
theorem Finset.filter_empty {α : Type u_1} (p : αProp) [DecidablePred p] :
theorem Finset.filter_subset_filter {α : Type u_1} (p : αProp) [DecidablePred p] {s : Finset α} {t : Finset α} (h : s t) :
theorem Finset.monotone_filter_right {α : Type u_1} (s : Finset α) ⦃p : αProp ⦃q : αProp [DecidablePred p] [DecidablePred q] (h : p q) :
@[simp]
theorem Finset.coe_filter {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) :
(Finset.filter p s) = {x : α | x s p x}
theorem Finset.subset_coe_filter_of_subset_forall {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) {t : Set α} (h₁ : t s) (h₂ : xt, p x) :
t (Finset.filter p s)
theorem Finset.filter_singleton {α : Type u_1} (p : αProp) [DecidablePred p] (a : α) :
Finset.filter p {a} = if p a then {a} else
theorem Finset.filter_cons_of_pos {α : Type u_1} (p : αProp) [DecidablePred p] (a : α) (s : Finset α) (ha : as) (hp : p a) :
theorem Finset.filter_cons_of_neg {α : Type u_1} (p : αProp) [DecidablePred p] (a : α) (s : Finset α) (ha : as) (hp : ¬p a) :
theorem Finset.disjoint_filter {α : Type u_1} {s : Finset α} {p : αProp} {q : αProp} [DecidablePred p] [DecidablePred q] :
Disjoint (Finset.filter p s) (Finset.filter q s) xs, p x¬q x
theorem Finset.disjoint_filter_filter {α : Type u_1} {s : Finset α} {t : Finset α} {p : αProp} {q : αProp} [DecidablePred p] [DecidablePred q] :
theorem Finset.disjoint_filter_filter' {α : Type u_1} (s : Finset α) (t : Finset α) {p : αProp} {q : αProp} [DecidablePred p] [DecidablePred q] (h : Disjoint p q) :
theorem Finset.disjoint_filter_filter_neg {α : Type u_1} (s : Finset α) (t : Finset α) (p : αProp) [DecidablePred p] [(x : α) → Decidable ¬p x] :
Disjoint (Finset.filter p s) (Finset.filter (fun (a : α) => ¬p a) t)
@[deprecated Finset.disjoint_filter_filter_neg]
theorem Finset.filter_inter_filter_neg_eq {α : Type u_1} (s : Finset α) (t : Finset α) (p : αProp) [DecidablePred p] [(x : α) → Decidable ¬p x] :
Disjoint (Finset.filter p s) (Finset.filter (fun (a : α) => ¬p a) t)

Alias of Finset.disjoint_filter_filter_neg.

theorem Finset.filter_disj_union {α : Type u_1} (p : αProp) [DecidablePred p] (s : Finset α) (t : Finset α) (h : Disjoint s t) :
Finset.filter p (s.disjUnion t h) = (Finset.filter p s).disjUnion (Finset.filter p t)
theorem Set.pairwiseDisjoint_filter {α : Type u_1} {β : Type u_2} [DecidableEq β] (f : αβ) (s : Set β) (t : Finset α) :
s.PairwiseDisjoint fun (x : β) => Finset.filter (fun (x_1 : α) => f x_1 = x) t
theorem Finset.filter_cons {α : Type u_1} (p : αProp) [DecidablePred p] {a : α} (s : Finset α) (ha : as) :
Finset.filter p (Finset.cons a s ha) = if p a then Finset.cons a (Finset.filter p s) else Finset.filter p s
theorem Finset.filter_union {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
Finset.filter p (s₁ s₂) = Finset.filter p s₁ Finset.filter p s₂
theorem Finset.filter_union_right {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] [DecidableEq α] (s : Finset α) :
Finset.filter p s Finset.filter q s = Finset.filter (fun (x : α) => p x q x) s
theorem Finset.filter_mem_eq_inter {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} [(i : α) → Decidable (i t)] :
Finset.filter (fun (i : α) => i t) s = s t
theorem Finset.filter_inter_distrib {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (s : Finset α) (t : Finset α) :
theorem Finset.filter_inter {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (s : Finset α) (t : Finset α) :
theorem Finset.inter_filter {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (s : Finset α) (t : Finset α) :
theorem Finset.filter_insert {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (a : α) (s : Finset α) :
Finset.filter p (insert a s) = if p a then insert a (Finset.filter p s) else Finset.filter p s
theorem Finset.filter_erase {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (a : α) (s : Finset α) :
Finset.filter p (s.erase a) = (Finset.filter p s).erase a
theorem Finset.filter_or {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] [DecidableEq α] (s : Finset α) :
Finset.filter (fun (a : α) => p a q a) s = Finset.filter p s Finset.filter q s
theorem Finset.filter_and {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] [DecidableEq α] (s : Finset α) :
Finset.filter (fun (a : α) => p a q a) s = Finset.filter p s Finset.filter q s
theorem Finset.filter_not {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] (s : Finset α) :
Finset.filter (fun (a : α) => ¬p a) s = s \ Finset.filter p s
theorem Finset.filter_and_not {α : Type u_1} [DecidableEq α] (s : Finset α) (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] :
Finset.filter (fun (a : α) => p a ¬q a) s = Finset.filter p s \ Finset.filter q s
theorem Finset.sdiff_eq_filter {α : Type u_1} [DecidableEq α] (s₁ : Finset α) (s₂ : Finset α) :
s₁ \ s₂ = Finset.filter (fun (x : α) => xs₂) s₁
theorem Finset.subset_union_elim {α : Type u_1} [DecidableEq α] {s : Finset α} {t₁ : Set α} {t₂ : Set α} (h : s t₁ t₂) :
∃ (s₁ : Finset α) (s₂ : Finset α), s₁ s₂ = s s₁ t₁ s₂ t₂ \ t₁
theorem Finset.filter_eq {β : Type u_2} [DecidableEq β] (s : Finset β) (b : β) :
Finset.filter (Eq b) s = if b s then {b} else

After filtering out everything that does not equal a given value, at most that value remains.

This is equivalent to filter_eq' with the equality the other way.

theorem Finset.filter_eq' {β : Type u_2} [DecidableEq β] (s : Finset β) (b : β) :
Finset.filter (fun (a : β) => a = b) s = if b s then {b} else

After filtering out everything that does not equal a given value, at most that value remains.

This is equivalent to filter_eq with the equality the other way.

theorem Finset.filter_ne {β : Type u_2} [DecidableEq β] (s : Finset β) (b : β) :
Finset.filter (fun (a : β) => b a) s = s.erase b
theorem Finset.filter_ne' {β : Type u_2} [DecidableEq β] (s : Finset β) (b : β) :
Finset.filter (fun (a : β) => a b) s = s.erase b
theorem Finset.filter_union_filter_of_codisjoint {α : Type u_1} (p : αProp) (q : αProp) [DecidablePred p] [DecidablePred q] [DecidableEq α] (s : Finset α) (h : Codisjoint p q) :
theorem Finset.filter_union_filter_neg_eq {α : Type u_1} (p : αProp) [DecidablePred p] [DecidableEq α] [(x : α) → Decidable ¬p x] (s : Finset α) :
Finset.filter p s Finset.filter (fun (a : α) => ¬p a) s = s
theorem Finset.filter_inj {α : Type u_1} {p : αProp} [DecidablePred p] {s : Finset α} {t : Finset α} :
Finset.filter p s = Finset.filter p t ∀ ⦃a : α⦄, p a(a s a t)
theorem Finset.filter_inj' {α : Type u_1} {p : αProp} {q : αProp} [DecidablePred p] [DecidablePred q] {s : Finset α} :
Finset.filter p s = Finset.filter q s ∀ ⦃a : α⦄, a s(p a q a)

range #

range n is the set of natural numbers less than n.

Equations
@[simp]
@[simp]
theorem Finset.mem_range {n : } {m : } :
@[simp]
theorem Finset.coe_range (n : ) :
@[simp]
@[simp]

Alias of the reverse direction of Finset.range_subset.

theorem Finset.mem_range_succ_iff {a : } {b : } :
a Finset.range b.succ a b
theorem Finset.mem_range_le {n : } {x : } (hx : x Finset.range n) :
x n
theorem Finset.mem_range_sub_ne_zero {n : } {x : } (hx : x Finset.range n) :
n - x 0
@[simp]
theorem Finset.nonempty_range_iff {n : } :
(Finset.range n).Nonempty n 0
theorem Finset.Aesop.range_nonempty {n : } :
n 0(Finset.range n).Nonempty

Alias of the reverse direction of Finset.nonempty_range_iff.

theorem Finset.nonempty_range_succ {n : } :
(Finset.range (n + 1)).Nonempty
@[simp]
theorem Finset.range_filter_eq {n : } {m : } :
Finset.filter (fun (x : ) => x = m) (Finset.range n) = if m < n then {m} else
theorem Finset.range_nontrivial {n : } (hn : 1 < n) :
(Finset.range n).Nontrivial
theorem Finset.exists_mem_empty_iff {α : Type u_1} (p : αProp) :
(∃ x, p x) False
theorem Finset.exists_mem_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (p : αProp) :
(∃ xinsert a s, p x) p a xs, p x
theorem Finset.forall_mem_empty_iff {α : Type u_1} (p : αProp) :
(∀ x, p x) True
theorem Finset.forall_mem_insert {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) (p : αProp) :
(∀ xinsert a s, p x) p a xs, p x
theorem Finset.forall_of_forall_insert {α : Type u_1} [DecidableEq α] {p : αProp} {a : α} {s : Finset α} (H : xinsert a s, p x) (x : α) (h : x s) :
p x

Useful in proofs by induction.

def notMemRangeEquiv (k : ) :
{ n : // nMultiset.range k }

Equivalence between the set of natural numbers which are ≥ k and , given by n → n - k.

Equations
@[simp]
theorem coe_notMemRangeEquiv (k : ) :
(notMemRangeEquiv k) = fun (i : { n : // nMultiset.range k }) => i - k
@[simp]
theorem coe_notMemRangeEquiv_symm (k : ) :
(notMemRangeEquiv k).symm = fun (j : ) => j + k,

dedup on list and multiset #

def Multiset.toFinset {α : Type u_1} [DecidableEq α] (s : Multiset α) :

toFinset s removes duplicates from the multiset s to produce a finset.

Equations
  • s.toFinset = { val := s.dedup, nodup := }
@[simp]
theorem Multiset.toFinset_val {α : Type u_1} [DecidableEq α] (s : Multiset α) :
s.toFinset.val = s.dedup
theorem Multiset.toFinset_eq {α : Type u_1} [DecidableEq α] {s : Multiset α} (n : s.Nodup) :
{ val := s, nodup := n } = s.toFinset
theorem Multiset.Nodup.toFinset_inj {α : Type u_1} [DecidableEq α] {l : Multiset α} {l' : Multiset α} (hl : l.Nodup) (hl' : l'.Nodup) (h : l.toFinset = l'.toFinset) :
l = l'
@[simp]
theorem Multiset.mem_toFinset {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
a s.toFinset a s
@[simp]
theorem Multiset.toFinset_cons {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
(a ::ₘ s).toFinset = insert a s.toFinset
@[simp]
theorem Multiset.toFinset_singleton {α : Type u_1} [DecidableEq α] (a : α) :
{a}.toFinset = {a}
@[simp]
theorem Multiset.toFinset_add {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
(s + t).toFinset = s.toFinset t.toFinset
@[simp]
theorem Multiset.toFinset_nsmul {α : Type u_1} [DecidableEq α] (s : Multiset α) (n : ) :
n 0(n s).toFinset = s.toFinset
theorem Multiset.toFinset_eq_singleton_iff {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
s.toFinset = {a} Multiset.card s 0 s = Multiset.card s {a}
@[simp]
theorem Multiset.toFinset_inter {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
(s t).toFinset = s.toFinset t.toFinset
@[simp]
theorem Multiset.toFinset_union {α : Type u_1} [DecidableEq α] (s : Multiset α) (t : Multiset α) :
(s t).toFinset = s.toFinset t.toFinset
@[simp]
theorem Multiset.toFinset_eq_empty {α : Type u_1} [DecidableEq α] {m : Multiset α} :
m.toFinset = m = 0
@[simp]
theorem Multiset.toFinset_nonempty {α : Type u_1} [DecidableEq α] {s : Multiset α} :
s.toFinset.Nonempty s 0
theorem Multiset.Aesop.toFinset_nonempty_of_ne {α : Type u_1} [DecidableEq α] {s : Multiset α} :
s 0s.toFinset.Nonempty

Alias of the reverse direction of Multiset.toFinset_nonempty.

@[simp]
theorem Multiset.toFinset_subset {α : Type u_1} [DecidableEq α] {s : Multiset α} {t : Multiset α} :
s.toFinset t.toFinset s t
@[simp]
theorem Multiset.toFinset_ssubset {α : Type u_1} [DecidableEq α] {s : Multiset α} {t : Multiset α} :
s.toFinset t.toFinset s t
@[simp]
theorem Multiset.toFinset_dedup {α : Type u_1} [DecidableEq α] (m : Multiset α) :
m.dedup.toFinset = m.toFinset
@[simp]
theorem Multiset.toFinset_filter {α : Type u_1} [DecidableEq α] (s : Multiset α) (p : αProp) [DecidablePred p] :
(Multiset.filter p s).toFinset = Finset.filter p s.toFinset
instance Multiset.isWellFounded_ssubset {β : Type u_2} :
IsWellFounded (Multiset β) fun (x1 x2 : Multiset β) => x1 x2
Equations
  • =
@[simp]
theorem Finset.val_toFinset {α : Type u_1} [DecidableEq α] (s : Finset α) :
s.val.toFinset = s
theorem Finset.val_le_iff_val_subset {α : Type u_1} {a : Finset α} {b : Multiset α} :
a.val b a.val b
def List.toFinset {α : Type u_1} [DecidableEq α] (l : List α) :

toFinset l removes duplicates from the list l to produce a finset.

Equations
  • l.toFinset = (↑l).toFinset
@[simp]
theorem List.toFinset_val {α : Type u_1} [DecidableEq α] (l : List α) :
l.toFinset.val = l.dedup
@[simp]
theorem List.toFinset_coe {α : Type u_1} [DecidableEq α] (l : List α) :
(↑l).toFinset = l.toFinset
theorem List.toFinset_eq {α : Type u_1} [DecidableEq α] {l : List α} (n : l.Nodup) :
{ val := l, nodup := n } = l.toFinset
@[simp]
theorem List.mem_toFinset {α : Type u_1} [DecidableEq α] {l : List α} {a : α} :
a l.toFinset a l
@[simp]
theorem List.coe_toFinset {α : Type u_1} [DecidableEq α] (l : List α) :
l.toFinset = {a : α | a l}
@[simp]
theorem List.toFinset_nil {α : Type u_1} [DecidableEq α] :
[].toFinset =
@[simp]
theorem List.toFinset_cons {α : Type u_1} [DecidableEq α] {l : List α} {a : α} :
(a :: l).toFinset = insert a l.toFinset
theorem List.toFinset_surj_on {α : Type u_1} [DecidableEq α] :
Set.SurjOn List.toFinset {l : List α | l.Nodup} Set.univ
theorem List.toFinset_eq_iff_perm_dedup {α : Type u_1} [DecidableEq α] {l : List α} {l' : List α} :
l.toFinset = l'.toFinset l.dedup.Perm l'.dedup
theorem List.toFinset.ext_iff {α : Type u_1} [DecidableEq α] {a : List α} {b : List α} :
a.toFinset = b.toFinset ∀ (x : α), x a x b
theorem List.toFinset.ext {α : Type u_1} [DecidableEq α] {l : List α} {l' : List α} :
(∀ (x : α), x l x l')l.toFinset = l'.toFinset
theorem List.toFinset_eq_of_perm {α : Type u_1} [DecidableEq α] (l : List α) (l' : List α) (h : l.Perm l') :
l.toFinset = l'.toFinset
theorem List.perm_of_nodup_nodup_toFinset_eq {α : Type u_1} [DecidableEq α] {l : List α} {l' : List α} (hl : l.Nodup) (hl' : l'.Nodup) (h : l.toFinset = l'.toFinset) :
l.Perm l'
@[simp]
theorem List.toFinset_append {α : Type u_1} [DecidableEq α] {l : List α} {l' : List α} :
(l ++ l').toFinset = l.toFinset l'.toFinset
@[simp]
theorem List.toFinset_reverse {α : Type u_1} [DecidableEq α] {l : List α} :
l.reverse.toFinset = l.toFinset
theorem List.toFinset_replicate_of_ne_zero {α : Type u_1} [DecidableEq α] {a : α} {n : } (hn : n 0) :
(List.replicate n a).toFinset = {a}
@[simp]
theorem List.toFinset_union {α : Type u_1} [DecidableEq α] (l : List α) (l' : List α) :
(l l').toFinset = l.toFinset l'.toFinset
@[simp]
theorem List.toFinset_inter {α : Type u_1} [DecidableEq α] (l : List α) (l' : List α) :
(l l').toFinset = l.toFinset l'.toFinset
@[simp]
theorem List.toFinset_eq_empty_iff {α : Type u_1} [DecidableEq α] (l : List α) :
l.toFinset = l = []
@[simp]
theorem List.toFinset_nonempty_iff {α : Type u_1} [DecidableEq α] (l : List α) :
l.toFinset.Nonempty l []
theorem List.Aesop.toFinset_nonempty_of_ne {α : Type u_1} [DecidableEq α] (l : List α) :
l []l.toFinset.Nonempty

Alias of the reverse direction of List.toFinset_nonempty_iff.

@[simp]
theorem List.toFinset_filter {α : Type u_1} [DecidableEq α] (s : List α) (p : αBool) :
(List.filter p s).toFinset = Finset.filter (fun (x : α) => p x = true) s.toFinset
noncomputable def Finset.toList {α : Type u_1} (s : Finset α) :
List α

Produce a list of the elements in the finite set using choice.

Equations
  • s.toList = s.val.toList
theorem Finset.nodup_toList {α : Type u_1} (s : Finset α) :
s.toList.Nodup
@[simp]
theorem Finset.mem_toList {α : Type u_1} {a : α} {s : Finset α} :
a s.toList a s
@[simp]
theorem Finset.toList_eq_nil {α : Type u_1} {s : Finset α} :
s.toList = [] s =
theorem Finset.empty_toList {α : Type u_1} {s : Finset α} :
s.toList.isEmpty = true s =
@[simp]
theorem Finset.toList_empty {α : Type u_1} :
.toList = []
theorem Finset.Nonempty.toList_ne_nil {α : Type u_1} {s : Finset α} (hs : s.Nonempty) :
s.toList []
theorem Finset.Nonempty.not_empty_toList {α : Type u_1} {s : Finset α} (hs : s.Nonempty) :
¬s.toList.isEmpty = true
@[simp]
theorem Finset.coe_toList {α : Type u_1} (s : Finset α) :
s.toList = s.val
@[simp]
theorem Finset.toList_toFinset {α : Type u_1} [DecidableEq α] (s : Finset α) :
s.toList.toFinset = s
theorem List.toFinset_toList {α : Type u_1} [DecidableEq α] {s : List α} (hs : s.Nodup) :
s.toFinset.toList.Perm s
@[simp]
theorem Finset.toList_eq_singleton_iff {α : Type u_1} {a : α} {s : Finset α} :
s.toList = [a] s = {a}
@[simp]
theorem Finset.toList_singleton {α : Type u_1} (a : α) :
{a}.toList = [a]
theorem Finset.exists_list_nodup_eq {α : Type u_1} [DecidableEq α] (s : Finset α) :
∃ (l : List α), l.Nodup l.toFinset = s
theorem Finset.toList_cons {α : Type u_1} {a : α} {s : Finset α} (h : as) :
(Finset.cons a s h).toList.Perm (a :: s.toList)
theorem Finset.toList_insert {α : Type u_1} [DecidableEq α] {a : α} {s : Finset α} (h : as) :
(insert a s).toList.Perm (a :: s.toList)

choose #

def Finset.chooseX {α : Type u_1} (p : αProp) [DecidablePred p] (l : Finset α) (hp : ∃! a : α, a l p a) :
{ a : α // a l p a }

Given a finset l and a predicate p, associate to a proof that there is a unique element of l satisfying p this unique element, as an element of the corresponding subtype.

Equations
def Finset.choose {α : Type u_1} (p : αProp) [DecidablePred p] (l : Finset α) (hp : ∃! a : α, a l p a) :
α

Given a finset l and a predicate p, associate to a proof that there is a unique element of l satisfying p this unique element, as an element of the ambient type.

Equations
theorem Finset.choose_spec {α : Type u_1} (p : αProp) [DecidablePred p] (l : Finset α) (hp : ∃! a : α, a l p a) :
Finset.choose p l hp l p (Finset.choose p l hp)
theorem Finset.choose_mem {α : Type u_1} (p : αProp) [DecidablePred p] (l : Finset α) (hp : ∃! a : α, a l p a) :
theorem Finset.choose_property {α : Type u_1} (p : αProp) [DecidablePred p] (l : Finset α) (hp : ∃! a : α, a l p a) :
p (Finset.choose p l hp)
theorem Finset.pairwise_subtype_iff_pairwise_finset' {α : Type u_1} {β : Type u_2} {s : Finset α} (r : ββProp) (f : αβ) :
Pairwise (r on fun (x : { x : α // x s }) => f x) (↑s).Pairwise (r on f)
theorem Finset.pairwise_subtype_iff_pairwise_finset {α : Type u_1} {s : Finset α} (r : ααProp) :
Pairwise (r on fun (x : { x : α // x s }) => x) (↑s).Pairwise r
theorem Finset.pairwise_cons' {α : Type u_1} {β : Type u_2} {s : Finset α} {a : α} (ha : as) (r : ββProp) (f : αβ) :
Pairwise (r on fun (a_1 : { x : α // x Finset.cons a s ha }) => f a_1) Pairwise (r on fun (a : { x : α // x s }) => f a) bs, r (f a) (f b) r (f b) (f a)
theorem Finset.pairwise_cons {α : Type u_1} {s : Finset α} {a : α} (ha : as) (r : ααProp) :
Pairwise (r on fun (a_1 : { x : α // x Finset.cons a s ha }) => a_1) Pairwise (r on fun (a : { x : α // x s }) => a) bs, r a b r b a
def Equiv.Finset.union {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) (h : Disjoint s t) :
{ x : α // x s } { x : α // x t } { x : α // x s t }

The disjoint union of finsets is a sum

Equations
@[simp]
theorem Equiv.Finset.union_symm_inl {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : Disjoint s t) (x : { x : α // x s }) :
(Equiv.Finset.union s t h) (Sum.inl x) = x,
@[simp]
theorem Equiv.Finset.union_symm_inr {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : Disjoint s t) (y : { x : α // x t }) :
(Equiv.Finset.union s t h) (Sum.inr y) = y,
def Equiv.piFinsetUnion {ι : Type u_5} [DecidableEq ι] (α : ιType u_4) {s : Finset ι} {t : Finset ι} (h : Disjoint s t) :
((i : { x : ι // x s }) → α i) × ((i : { x : ι // x t }) → α i) ((i : { x : ι // x s t }) → α i)

The type of dependent functions on the disjoint union of finsets s ∪ t is equivalent to the type of pairs of functions on s and on t. This is similar to Equiv.sumPiEquivProdPi.

Equations
  • One or more equations did not get rendered due to their size.
theorem Multiset.disjoint_toFinset {α : Type u_1} [DecidableEq α] {m1 : Multiset α} {m2 : Multiset α} :
Disjoint m1.toFinset m2.toFinset m1.Disjoint m2
theorem List.disjoint_toFinset_iff_disjoint {α : Type u_1} [DecidableEq α] {l : List α} {l' : List α} :
Disjoint l.toFinset l'.toFinset l.Disjoint l'
def Mathlib.Meta.proveFinsetNonempty {u : Lean.Level} {α : Q(Type u)} (s : Q(Finset «$α»)) :
Lean.MetaM (Option Q(«$s».Nonempty))

Attempt to prove that a finset is nonempty using the finsetNonempty aesop rule-set.

You can add lemmas to the rule-set by tagging them with either:

  • aesop safe apply (rule_sets := [finsetNonempty]) if they are always a good idea to follow or
  • aesop unsafe apply (rule_sets := [finsetNonempty]) if they risk directing the search to a blind alley.

TODO: should some of the lemmas be aesop safe simp instead?

Equations
  • One or more equations did not get rendered due to their size.