theorem
MeasureTheory.tendsto_zero_measure_of_antitone
{α : Type u_1}
[MeasurableSpace α]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
{s : ℕ → Set α}
(hs1 : ∀ (n : ℕ), MeasurableSet (s n))
(hs2 : Antitone s)
(hs3 : ⋂ (n : ℕ), s n = ∅)
:
Filter.Tendsto (fun (n : ℕ) => μ (s n)) Filter.atTop (nhds 0)
Some version of continuity of a measure in the emptyset using a decreasing sequence of sets.
theorem
MeasureTheory.exists_measure_iInter_lt
{α : Type u_1}
[MeasurableSpace α]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
(S : ℕ → Set α)
(hS2 : ∀ (n : ℕ), MeasurableSet (S n))
(hS3 : ⋂ (n : ℕ), S n = ∅)
{ε : ENNReal}
(hε : 0 < ε)
:
Some version of continuity of a measure in the emptyset using the intersection along a set of sets.
theorem
MeasurableSet.ball
{α : Type u_1}
:
∀ {x : MeasurableSpace α} (x_1 : α) {s : Set (α × α)}, MeasurableSet s → MeasurableSet (UniformSpace.ball x_1 s)
def
UniformSpace.interUnionBalls
{α : Type u_1}
(xs : ℕ → α)
(u : ℕ → ℕ)
(V : ℕ → Set (α × α))
:
Set α
Given a family of points xs n
, a family of entourages V n
of the diagonal and a family of
natural numbers u n
, the intersection over n
of the V n
-neighborhood of xs 1, ..., xs (u n)
.
Designed to be relatively compact when V n
tends to the diagonal.
Equations
- UniformSpace.interUnionBalls xs u V = ⋂ (n : ℕ), ⋃ (m : ℕ), ⋃ (_ : m ≤ u n), UniformSpace.ball (xs m) (Prod.swap ⁻¹' V n)
Instances For
theorem
UniformSpace.totallyBounded_interUnionBalls
{α : Type u_1}
[UniformSpace α]
{p : ℕ → Prop}
{U : ℕ → Set (α × α)}
(H : (uniformity α).HasBasis p U)
(xs : ℕ → α)
(u : ℕ → ℕ)
:
theorem
UniformSpace.isCompact_closure_interUnionBalls
{α : Type u_1}
[UniformSpace α]
{p : ℕ → Prop}
{U : ℕ → Set (α × α)}
(H : (uniformity α).HasBasis p U)
[CompleteSpace α]
(xs : ℕ → α)
(u : ℕ → ℕ)
:
IsCompact (closure (UniformSpace.interUnionBalls xs u U))
The construction interUnionBalls
is used to have a relatively compact set.
theorem
MeasureTheory.measure_compl_interUnionBalls_le
{α : Type u_1}
:
∀ {x : MeasurableSpace α} (μ : MeasureTheory.Measure α) (xs : ℕ → α) (u : ℕ → ℕ) (V : ℕ → Set (α × α)),
μ (UniformSpace.interUnionBalls xs u V)ᶜ ≤ ∑' (n : ℕ), μ (⋃ (m : ℕ), ⋃ (_ : m ≤ u n), UniformSpace.ball (xs m) (Prod.swap ⁻¹' V n))ᶜ
theorem
MeasureTheory.innerRegularWRT_isCompact_closure_iff
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[TopologicalSpace α]
[R1Space α]
:
theorem
MeasureTheory.innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[TopologicalSpace α]
[R1Space α]
:
theorem
MeasureTheory.innerRegularWRT_isCompact_isClosed_iff
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[TopologicalSpace α]
[R1Space α]
:
theorem
MeasureTheory.innerRegularWRT_isCompact_closure_of_univ
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
[TopologicalSpace α]
(hμ : ∀ (ε : ENNReal), 0 < ε → ∃ (K : Set α), IsCompact (closure K) ∧ μ Kᶜ < ε)
:
μ.InnerRegularWRT (IsCompact ∘ closure) IsClosed
theorem
MeasureTheory.exists_isCompact_closure_measure_lt_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[UniformSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[(uniformity α).IsCountablyGenerated]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
(ε : ENNReal)
(hε : 0 < ε)
:
theorem
MeasureTheory.innerRegularWRT_isCompact_closure_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[UniformSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[(uniformity α).IsCountablyGenerated]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
P.InnerRegularWRT (IsCompact ∘ closure) IsClosed
theorem
MeasureTheory.innerRegularWRT_isCompact_isClosed_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[UniformSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[(uniformity α).IsCountablyGenerated]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
theorem
MeasureTheory.innerRegularWRT_isCompact_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[UniformSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[(uniformity α).IsCountablyGenerated]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
P.InnerRegularWRT IsCompact IsClosed
theorem
MeasureTheory.innerRegularWRT_isCompact_isClosed_isOpen_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
theorem
MeasureTheory.innerRegularWRT_isCompact_isOpen_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[OpensMeasurableSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
P.InnerRegularWRT IsCompact IsOpen
theorem
MeasureTheory.InnerRegularCompactLTTop_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[BorelSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
P.InnerRegularCompactLTTop
theorem
MeasureTheory.innerRegular_isCompact_isClosed_measurableSet_of_complete_countable
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[CompleteSpace α]
[SecondCountableTopology α]
[BorelSpace α]
(P : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure P]
:
theorem
MeasureTheory.PolishSpace.innerRegular_isCompact_measurableSet
{α : Type u_1}
[MeasurableSpace α]
[TopologicalSpace α]
[PolishSpace α]
[BorelSpace α]
(μ : MeasureTheory.Measure α)
[MeasureTheory.IsFiniteMeasure μ]
:
On a Polish space, any finite measure is regular with respect to compact and closed sets.