Documentation

KolmogorovExtension4.RegularityCompacts

theorem MeasureTheory.tendsto_zero_measure_of_antitone {α : Type u_1} [MeasurableSpace α] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] {s : Set α} (hs1 : ∀ (n : ), MeasurableSet (s n)) (hs2 : Antitone s) (hs3 : ⋂ (n : ), s n = ) :
Filter.Tendsto (fun (n : ) => μ (s n)) Filter.atTop (nhds 0)

Some version of continuity of a measure in the emptyset using a decreasing sequence of sets.

theorem MeasureTheory.exists_measure_iInter_lt {α : Type u_1} [MeasurableSpace α] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (S : Set α) (hS2 : ∀ (n : ), MeasurableSet (S n)) (hS3 : ⋂ (n : ), S n = ) {ε : ENNReal} (hε : 0 < ε) :
∃ (m : ), μ (⋂ (n : ), ⋂ (_ : n m), S n) < ε

Some version of continuity of a measure in the emptyset using the intersection along a set of sets.

theorem MeasurableSet.ball {α : Type u_1} :
∀ {x : MeasurableSpace α} (x_1 : α) {s : Set (α × α)}, MeasurableSet sMeasurableSet (UniformSpace.ball x_1 s)
def UniformSpace.interUnionBalls {α : Type u_1} (xs : α) (u : ) (V : Set (α × α)) :
Set α

Given a family of points xs n, a family of entourages V n of the diagonal and a family of natural numbers u n, the intersection over n of the V n-neighborhood of xs 1, ..., xs (u n). Designed to be relatively compact when V n tends to the diagonal.

Equations
Instances For
    theorem UniformSpace.totallyBounded_interUnionBalls {α : Type u_1} [UniformSpace α] {p : Prop} {U : Set (α × α)} (H : (uniformity α).HasBasis p U) (xs : α) (u : ) :
    theorem UniformSpace.isCompact_closure_interUnionBalls {α : Type u_1} [UniformSpace α] {p : Prop} {U : Set (α × α)} (H : (uniformity α).HasBasis p U) [CompleteSpace α] (xs : α) (u : ) :

    The construction interUnionBalls is used to have a relatively compact set.

    theorem MeasureTheory.measure_compl_interUnionBalls_le {α : Type u_1} :
    ∀ {x : MeasurableSpace α} (μ : MeasureTheory.Measure α) (xs : α) (u : ) (V : Set (α × α)), μ (UniformSpace.interUnionBalls xs u V) ∑' (n : ), μ (⋃ (m : ), ⋃ (_ : m u n), UniformSpace.ball (xs m) (Prod.swap ⁻¹' V n))
    theorem MeasureTheory.innerRegularWRT_isCompact_closure_iff {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [TopologicalSpace α] [R1Space α] :
    μ.InnerRegularWRT (IsCompact closure) IsClosed μ.InnerRegularWRT IsCompact IsClosed
    theorem MeasureTheory.innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [TopologicalSpace α] [R1Space α] :
    μ.InnerRegularWRT (fun (s : Set α) => IsCompact s IsClosed s) IsClosed μ.InnerRegularWRT (IsCompact closure) IsClosed
    theorem MeasureTheory.innerRegularWRT_isCompact_isClosed_iff {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [TopologicalSpace α] [R1Space α] :
    μ.InnerRegularWRT (fun (s : Set α) => IsCompact s IsClosed s) IsClosed μ.InnerRegularWRT IsCompact IsClosed
    theorem MeasureTheory.innerRegularWRT_of_exists_compl_lt {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {p : Set αProp} {q : Set αProp} (hpq : ∀ (A B : Set α), p Aq Bp (A B)) (hμ : ∀ (ε : ENNReal), 0 < ε∃ (K : Set α), p K μ K < ε) :
    μ.InnerRegularWRT p q
    theorem MeasureTheory.innerRegularWRT_isCompact_closure_of_univ {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} [TopologicalSpace α] (hμ : ∀ (ε : ENNReal), 0 < ε∃ (K : Set α), IsCompact (closure K) μ K < ε) :
    μ.InnerRegularWRT (IsCompact closure) IsClosed

    On a Polish space, any finite measure is regular with respect to compact and closed sets.