Documentation

KolmogorovExtension4.RegularContent

theorem MeasureTheory.tendsto_zero_of_regular_addContent {α : Type u_1} {C : Set (Set α)} {R : Set (Set α)} {s : Set α} (hR : MeasureTheory.IsSetRing R) (m : MeasureTheory.AddContent R) (hs : ∀ (n : ), s n R) (hs_anti : Antitone s) (hs_Inter : ⋂ (n : ), s n = ) (hC : IsCompactSystem C) (hCR : C R) (h_reg : AR, ∀ (ε : ENNReal), 0 < εKC, K A m (A \ K) ε) :
Filter.Tendsto (fun (n : ) => m (s n)) Filter.atTop (nhds 0)
theorem MeasureTheory.AddContent.sigma_additive_of_regular {α : Type u_1} {C : Set (Set α)} {R : Set (Set α)} (hR : MeasureTheory.IsSetRing R) (m : MeasureTheory.AddContent R) (hm_ne_top : sR, m s ) (hC : IsCompactSystem C) (hCR : C R) (h_reg : AR, ∀ (ε : ENNReal), 0 < εKC, K A m (A \ K) ε) ⦃f : Set α (hf : ∀ (i : ), f i R) (hUf : ⋃ (i : ), f i R) (h_disj : Pairwise (Disjoint on f)) :
m (⋃ (i : ), f i) = ∑' (i : ), m (f i)