Documentation

KolmogorovExtension4.AdditiveOfContinuous

theorem MeasureTheory.sigma_additive_addContent_of_tendsto_zero {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetRing C) (m : MeasureTheory.AddContent C) (hm_ne_top : sC, m s ) (hm_tendsto : ∀ ⦃s : Set α⦄, (∀ (n : ), s n C)Antitone s⋂ (n : ), s n = Filter.Tendsto (fun (n : ) => m (s n)) Filter.atTop (nhds 0)) ⦃f : Set α (hf : ∀ (i : ), f i C) (hUf : ⋃ (i : ), f i C) (h_disj : Pairwise (Disjoint on f)) :
m (⋃ (i : ), f i) = ∑' (i : ), m (f i)

In a ring of sets, continuity of an additive content at implies σ-additivity. This is not true in general in semirings, or without the hypothesis that m is finite. See the examples 7 and 8 in Halmos' book Measure Theory (1974), page 40.

theorem MeasureTheory.sUnion_eq_sum_of_union_eq_add {α : Type u_1} {C : Set (Set α)} (hC_empty : C) (hC_union : ∀ {s t : Set α}, s Ct Cs t C) (m : Set αENNReal) (m_empty : m = 0) (m_add : ∀ {s t : Set α}, s Ct CDisjoint s tm (s t) = m s + m t) (I : Finset (Set α)) (h_ss : I C) (h_dis : (↑I).PairwiseDisjoint id) (h_mem : ⋃₀ I C) :
m (⋃₀ I) = uI, m u
theorem MeasureTheory.sUnion_eq_sum_of_union_eq_add' {α : Type u_1} {C : Set (Set α)} (hC_empty : C) (hC_union : ∀ {s t : Set α}, s Ct Cs t C) (m : (s : Set α) → s CENNReal) (m_empty : m hC_empty = 0) (m_add : ∀ {s t : Set α} (hs : s C) (ht : t C), Disjoint s tm (s t) = m s hs + m t ht) (I : Finset (Set α)) (h_ss : I C) (h_dis : (↑I).PairwiseDisjoint id) (h_mem : ⋃₀ I C) :
m (⋃₀ I) h_mem = u : { x : Set α // x I }, m u