Documentation

KolmogorovExtension4.CaratheodoryExtension

theorem MeasureTheory.OuterMeasure.ofFunction_addContent_eq {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) (m_top : sC, m s = ) {s : Set α} (hs : s C) :
theorem MeasureTheory.inducedOuterMeasure_addContent_of_subadditive {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) {s : Set α} (hs : s C) :
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x C) => m x) ) s = m s
theorem MeasureTheory.caratheodory_semiring_extension' {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_top : sC, m s = ) {s : Set α} (hs : s C) :
(MeasureTheory.OuterMeasure.ofFunction m ).IsCaratheodory s
theorem MeasureTheory.caratheodory_semiring_extension {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) {s : Set α} (hs : s C) :
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x C) => m x) ).IsCaratheodory s
theorem MeasureTheory.isCaratheodory_inducedOuterMeasure {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (s : Set α) (hs : MeasurableSet s) :
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x C) => m x) ).IsCaratheodory s
noncomputable def MeasureTheory.Measure.ofAddContentCaratheodory {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) :

Construct a measure from a sigma-subadditive function on a semiring. This measure is defined on the associated Carathéodory sigma-algebra.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.Measure.ofAddContentCaratheodory_eq_inducedOuterMeasure {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) (s : Set α) :
    (MeasureTheory.Measure.ofAddContentCaratheodory hC m m_sigma_subadd) s = (MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x C) => m x) ) s
    theorem MeasureTheory.Measure.ofAddContentCaratheodory_eq {α : Type u_1} {C : Set (Set α)} (hC : MeasureTheory.IsSetSemiring C) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) {s : Set α} (hs : s C) :
    noncomputable def MeasureTheory.Measure.ofAddContent {α : Type u_1} {C : Set (Set α)} [mα : MeasurableSpace α] (hC : MeasureTheory.IsSetSemiring C) (hC_gen : MeasurableSpace.generateFrom C = ) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) :

    Construct a measure from a sigma-subadditive content on a semiring, assuming the semiring generates a given measurable structure. The measure is defined on this measurable structure.

    Equations
    Instances For
      theorem MeasureTheory.Measure.ofAddContent_eq {α : Type u_1} {C : Set (Set α)} [mα : MeasurableSpace α] (hC : MeasureTheory.IsSetSemiring C) (hC_gen : MeasurableSpace.generateFrom C = ) (m : MeasureTheory.AddContent C) (m_sigma_subadd : ∀ ⦃f : Set α⦄, (∀ (i : ), f i C)⋃ (i : ), f i Cm (⋃ (i : ), f i) ∑' (i : ), m (f i)) {s : Set α} (hs : s C) :
      (MeasureTheory.Measure.ofAddContent hC hC_gen m m_sigma_subadd) s = m s