theorem
MeasureTheory.OuterMeasure.ofFunction_addContent_eq
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
(m_top : ∀ s ∉ C, m s = ⊤)
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.OuterMeasure.ofFunction ⇑m ⋯) s = m s
theorem
MeasureTheory.inducedOuterMeasure_addContent_of_subadditive
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x ∈ C) => m x) ⋯ ⋯) s = m s
theorem
MeasureTheory.caratheodory_semiring_extension'
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_top : ∀ s ∉ C, m s = ⊤)
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.OuterMeasure.ofFunction ⇑m ⋯).IsCaratheodory s
theorem
MeasureTheory.caratheodory_semiring_extension
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x ∈ C) => m x) ⋯ ⋯).IsCaratheodory s
theorem
MeasureTheory.isCaratheodory_inducedOuterMeasure
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(s : Set α)
(hs : MeasurableSet s)
:
(MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x ∈ C) => m x) ⋯ ⋯).IsCaratheodory s
noncomputable def
MeasureTheory.Measure.ofAddContentCaratheodory
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
:
Construct a measure from a sigma-subadditive function on a semiring. This measure is defined on the associated Carathéodory sigma-algebra.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MeasureTheory.Measure.ofAddContentCaratheodory_eq_inducedOuterMeasure
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
(s : Set α)
:
(MeasureTheory.Measure.ofAddContentCaratheodory hC m m_sigma_subadd) s = (MeasureTheory.inducedOuterMeasure (fun (x : Set α) (x_1 : x ∈ C) => m x) ⋯ ⋯) s
theorem
MeasureTheory.Measure.ofAddContentCaratheodory_eq
{α : Type u_1}
{C : Set (Set α)}
(hC : MeasureTheory.IsSetSemiring C)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.Measure.ofAddContentCaratheodory hC m m_sigma_subadd) s = m s
noncomputable def
MeasureTheory.Measure.ofAddContent
{α : Type u_1}
{C : Set (Set α)}
[mα : MeasurableSpace α]
(hC : MeasureTheory.IsSetSemiring C)
(hC_gen : MeasurableSpace.generateFrom C = mα)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
:
Construct a measure from a sigma-subadditive content on a semiring, assuming the semiring generates a given measurable structure. The measure is defined on this measurable structure.
Equations
- MeasureTheory.Measure.ofAddContent hC hC_gen m m_sigma_subadd = (MeasureTheory.Measure.ofAddContentCaratheodory hC m m_sigma_subadd).trim ⋯
Instances For
theorem
MeasureTheory.Measure.ofAddContent_eq
{α : Type u_1}
{C : Set (Set α)}
[mα : MeasurableSpace α]
(hC : MeasureTheory.IsSetSemiring C)
(hC_gen : MeasurableSpace.generateFrom C = mα)
(m : MeasureTheory.AddContent C)
(m_sigma_subadd : ∀ ⦃f : ℕ → Set α⦄, (∀ (i : ℕ), f i ∈ C) → ⋃ (i : ℕ), f i ∈ C → m (⋃ (i : ℕ), f i) ≤ ∑' (i : ℕ), m (f i))
{s : Set α}
(hs : s ∈ C)
:
(MeasureTheory.Measure.ofAddContent hC hC_gen m m_sigma_subadd) s = m s