Documentation

KolmogorovExtension4.Annexe

New lemmas for mathlib

theorem indicator_one_mul_const {α : Type u_1} {M : Type u_2} [MonoidWithZero M] (s : Set α) (c : M) (a : α) :
s.indicator 1 a * c = s.indicator (fun (x : α) => c) a
theorem indicator_one_mul_const' {α : Type u_1} {M : Type u_2} [MonoidWithZero M] (s : Set α) (c : M) (a : α) :
s.indicator (fun (x : α) => 1) a * c = s.indicator (fun (x : α) => c) a
theorem preimage_indicator {α : Type u_1} {β : Type u_2} {M : Type u_3} [Zero M] (f : αβ) (s : Set β) (a : α) (c : M) :
(f ⁻¹' s).indicator (fun (x : α) => c) a = s.indicator (fun (x : β) => c) (f a)
theorem indicator_const_eq {α : Type u_1} {β : Type u_2} {M : Type u_3} [Zero M] {s : Set α} {t : Set β} {a : α} {b : β} (c : M) (h : a s b t) :
s.indicator (fun (x : α) => c) a = t.indicator (fun (x : β) => c) b
theorem indicator_const_eq_iff {α : Type u_1} {β : Type u_2} {M : Type u_3} [Zero M] {s : Set α} {t : Set β} {a : α} {b : β} (c : M) [hc : NeZero c] :
s.indicator (fun (x : α) => c) a = t.indicator (fun (x : β) => c) b (a s b t)
theorem Set.indicator_const_smul_apply' {α : Type u_1} {R : Type u_2} {M : Type u_3} [Zero R] [Zero M] [SMulWithZero R M] (s : Set α) (r : R) (f : αM) (a : α) :
s.indicator (r f) a = s.indicator (fun (x : α) => r) a f a
theorem Set.indicator_one_smul_apply {α : Type u_1} {M : Type u_2} {β : Type u_3} [Zero β] [MonoidWithZero M] [MulActionWithZero M β] (f : αβ) (s : Set α) (a : α) :
s.indicator f a = s.indicator (fun (x : α) => 1) a f a
theorem eq_of_measurable_comap {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [m : MeasurableSpace Y] [MeasurableSingletonClass Z] (f : XY) {g : XZ} (hg : Measurable g) {x₁ : X} {x₂ : X} (h : f x₁ = f x₂) :
g x₁ = g x₂

If a function g is measurable with respect to the pullback along some function f, then to prove g x = g y it is enough to prove f x = f y.

theorem eq_of_stronglyMeasurable_comap {X : Type u_1} {Y : Type u_2} {Z : Type u_6} [m : MeasurableSpace Y] [TopologicalSpace Z] [TopologicalSpace.PseudoMetrizableSpace Z] [T1Space Z] (f : XY) {g : XZ} (hg : MeasureTheory.StronglyMeasurable g) {x₁ : X} {x₂ : X} (h : f x₁ = f x₂) :
g x₁ = g x₂

If a function g is strongly measurable with respect to the pullback along some function f, then to prove g x = g y it is enough to prove f x = f y.

theorem Kernel.compProd_apply_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsSFiniteKernel κ] (η : ProbabilityTheory.Kernel (X × Y) Z) [ProbabilityTheory.IsSFiniteKernel η] {s : Set Y} (hs : MeasurableSet s) {t : Set Z} (ht : MeasurableSet t) (x : X) :
((κ.compProd η) x) (s ×ˢ t) = ∫⁻ (y : Y) in s, (η (x, y)) tκ x
theorem Kernel.map_map {X : Type u_1} {Y : Type u_2} {Z : Type u_3} {T : Type u_4} [MeasurableSpace Z] [MeasurableSpace T] [MeasurableSpace X] [MeasurableSpace Y] (κ : ProbabilityTheory.Kernel X Y) {f : YZ} (hf : Measurable f) {g : ZT} (hg : Measurable g) :
(κ.map f).map g = κ.map (g f)
theorem Kernel.map_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} {T : Type u_4} {U : Type u_5} [MeasurableSpace Z] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSpace X] [MeasurableSpace Y] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsFiniteKernel κ] (η : ProbabilityTheory.Kernel X T) [ProbabilityTheory.IsFiniteKernel η] {f : YZ} (hf : Measurable f) {g : TU} (hg : Measurable g) :
(κ.prod η).map (Prod.map f g) = (κ.map f).prod (η.map g)
theorem Kernel.map_deterministic {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {f : XY} (hf : Measurable f) {g : YZ} (hg : Measurable g) :
theorem Kernel.deterministic_prod_apply' {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {f : XY} (mf : Measurable f) (η : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsSFiniteKernel η] (x : X) {s : Set (Y × Z)} (ms : MeasurableSet s) :
(((ProbabilityTheory.Kernel.deterministic f mf).prod η) x) s = (η x) {z : Z | (f x, z) s}
theorem Kernel.prod_apply_symm' {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsSFiniteKernel κ] (η : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsSFiniteKernel η] (x : X) {s : Set (Y × Z)} (hs : MeasurableSet s) :
((κ.prod η) x) s = ∫⁻ (z : Z), (κ x) ((fun (y : Y) => (y, z)) ⁻¹' s)η x
theorem Kernel.prod_deterministic_apply' {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {f : XZ} (mf : Measurable f) (η : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsSFiniteKernel η] (x : X) {s : Set (Y × Z)} (ms : MeasurableSet s) :
((η.prod (ProbabilityTheory.Kernel.deterministic f mf)) x) s = (η x) {y : Y | (y, f x) s}
theorem Measure.map_snd_compProd {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] (μ : MeasureTheory.Measure X) [MeasureTheory.IsProbabilityMeasure μ] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsSFiniteKernel κ] {f : YZ} (hf : Measurable f) :
MeasureTheory.Measure.map f (μ.compProd κ).snd = (μ.compProd (κ.map f)).snd
theorem Kernel.comap_const {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] (μ : MeasureTheory.Measure Z) {f : XY} (hf : Measurable f) :
theorem Kernel.integrable_prod_iff {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsFiniteKernel κ] (η : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel η] (x : X) {f : Y × ZE} (hf : MeasureTheory.AEStronglyMeasurable f ((κ.prod η) x)) :
MeasureTheory.Integrable f ((κ.prod η) x) (∀ᵐ (y : Y) ∂κ x, MeasureTheory.Integrable (fun (z : Z) => f (y, z)) (η x)) MeasureTheory.Integrable (fun (y : Y) => ∫ (z : Z), f (y, z)η x) (κ x)
theorem Kernel.integrable_prod_iff' {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsFiniteKernel κ] (η : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel η] (x : X) {f : Y × ZE} (hf : MeasureTheory.AEStronglyMeasurable f ((κ.prod η) x)) :
MeasureTheory.Integrable f ((κ.prod η) x) (∀ᵐ (z : Z) ∂η x, MeasureTheory.Integrable (fun (y : Y) => f (y, z)) (κ x)) MeasureTheory.Integrable (fun (z : Z) => ∫ (y : Y), f (y, z)κ x) (η x)
theorem Kernel.integrable_deterministic_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] {f : XY} (mf : Measurable f) (κ : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel κ] (x : X) {g : Y × ZE} (mg : MeasureTheory.StronglyMeasurable g) :
MeasureTheory.Integrable g (((ProbabilityTheory.Kernel.deterministic f mf).prod κ) x) MeasureTheory.Integrable (fun (z : Z) => g (f x, z)) (κ x)
theorem Kernel.integrable_comp_iff {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] (η : ProbabilityTheory.Kernel Y Z) [ProbabilityTheory.IsSFiniteKernel η] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsSFiniteKernel κ] (x : X) {f : ZE} (hf : MeasureTheory.AEStronglyMeasurable f ((η.comp κ) x)) :
MeasureTheory.Integrable f ((η.comp κ) x) (∀ᵐ (y : Y) ∂κ x, MeasureTheory.Integrable f (η y)) MeasureTheory.Integrable (fun (y : Y) => ∫ (z : Z), f zη y) (κ x)
theorem Kernel.integral_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsFiniteKernel κ] (η : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel η] (x : X) {f : Y × ZE} (hf : MeasureTheory.Integrable f ((κ.prod η) x)) :
∫ (p : Y × Z), f p(κ.prod η) x = ∫ (y : Y), ∫ (z : Z), f (y, z)η xκ x
theorem Kernel.integral_comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] (η : ProbabilityTheory.Kernel Y Z) [ProbabilityTheory.IsFiniteKernel η] (κ : ProbabilityTheory.Kernel X Y) [ProbabilityTheory.IsFiniteKernel κ] (x : X) {g : ZE} (hg : MeasureTheory.Integrable g ((η.comp κ) x)) :
∫ (z : Z), g z(η.comp κ) x = ∫ (y : Y), ∫ (z : Z), g zη yκ x
theorem Kernel.integral_deterministic_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : XY} (mf : Measurable f) (κ : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel κ] (x : X) {g : Y × ZE} (mg : MeasureTheory.StronglyMeasurable g) (i_g : MeasureTheory.Integrable (fun (z : Z) => g (f x, z)) (κ x)) :
∫ (p : Y × Z), g p((ProbabilityTheory.Kernel.deterministic f mf).prod κ) x = ∫ (z : Z), g (f x, z)κ x
theorem Kernel.lintegral_deterministic_prod {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [MeasurableSpace Z] [MeasurableSpace X] [MeasurableSpace Y] {f : XY} (mf : Measurable f) (κ : ProbabilityTheory.Kernel X Z) [ProbabilityTheory.IsFiniteKernel κ] (x : X) {g : Y × ZENNReal} (mg : Measurable g) :
∫⁻ (p : Y × Z), g p((ProbabilityTheory.Kernel.deterministic f mf).prod κ) x = ∫⁻ (z : Z), g (f x, z)κ x
theorem MeasureTheory.Filtration.condexp_condexp {X : Type u_1} [MeasurableSpace X] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {ι : Type u_7} [Preorder ι] (f : XE) {μ : MeasureTheory.Measure X} (ℱ : MeasureTheory.Filtration ι inferInstance) {i : ι} {j : ι} (hij : i j) [MeasureTheory.SigmaFinite (μ.trim )] :
MeasureTheory.condexp ( i) μ (MeasureTheory.condexp ( j) μ f) =ᵐ[μ] MeasureTheory.condexp ( i) μ f
theorem mem_Ioc_succ {n : } {i : } :
i Finset.Ioc n (n + 1) i = n + 1
theorem updateFinset_self {ι : Type u_1} [DecidableEq ι] {α : ιType u_2} (x : (i : ι) → α i) {s : Finset ι} (y : (i : { x : ι // x s }) → α i) :
(fun (i : { x : ι // x s }) => Function.updateFinset x s y i) = y
theorem Finset.sub_Iic (I : Finset ) :
I Finset.Iic (I.sup id)
theorem Set.Iic_diff_Ioc_same {α : Type u_1} [LinearOrder α] {a : α} {b : α} (hab : a b) :
theorem Finset.Iic_sdiff_Ioc_same {α : Type u_1} [LinearOrder α] [OrderBot α] [LocallyFiniteOrder α] {a : α} {b : α} (hab : a b) :
theorem Finset.right_mem_Iic {α : Type u_1} [Preorder α] [LocallyFiniteOrderBot α] (a : α) :
theorem Finset.Iic_union_Ioc_eq_Iic {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [OrderBot α] {a : α} {b : α} (h : a b) :
theorem Finset.disjoint_Iic_Ioc {α : Type u_1} [Preorder α] [LocallyFiniteOrder α] [OrderBot α] {a : α} {b : α} {c : α} (h : a b) :
theorem Finset.prod_congr' {α : Type u_1} {M : Type u_2} [CommMonoid M] {s : Finset α} {t : Finset α} (hst : s = t) (f : { x : α // x t }M) :
i : { x : α // x s }, f i, = i : { x : α // x t }, f i
theorem Finset.prod_union' {α : Type u_1} {M : Type u_2} [DecidableEq α] [CommMonoid M] {s : Finset α} {t : Finset α} (hst : Disjoint s t) (f : { x : α // x s t }M) :
(∏ i : { x : α // x s }, f i, ) * i : { x : α // x t }, f i, = i : { x : α // x s t }, f i
theorem prod_Ioc {M : Type u_1} [CommMonoid M] (n : ) (f : { x : // x Finset.Ioc 0 (n + 1) }M) :
f n + 1, * i : { x : // x Finset.Ioc 0 n }, f i, = i : { x : // x Finset.Ioc 0 (n + 1) }, f i