Documentation

Mathlib.Probability.Kernel.Basic

Basic kernels #

This file contains basic results about kernels in general and definitions of some particular kernels.

Main definitions #

Main statements #

noncomputable def ProbabilityTheory.Kernel.deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (f : αβ) (hf : Measurable f) :

Kernel which to a associates the dirac measure at f a. This is a Markov kernel.

Equations
theorem ProbabilityTheory.Kernel.deterministic_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) :
theorem ProbabilityTheory.Kernel.deterministic_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) {s : Set β} (hs : MeasurableSet s) :
((ProbabilityTheory.Kernel.deterministic f hf) a) s = s.indicator (fun (x : β) => 1) (f a)
theorem ProbabilityTheory.Kernel.lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) :
∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
@[simp]
theorem ProbabilityTheory.Kernel.lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] :
∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
theorem ProbabilityTheory.Kernel.setLIntegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
@[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic']
theorem ProbabilityTheory.Kernel.set_lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic'.

@[simp]
theorem ProbabilityTheory.Kernel.setLIntegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
@[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic]
theorem ProbabilityTheory.Kernel.set_lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic.

Constant kernel, which always returns the same measure.

Equations
@[simp]
theorem ProbabilityTheory.Kernel.const_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μβ : MeasureTheory.Measure β) (a : α) :
@[simp]
@[simp]
theorem ProbabilityTheory.Kernel.lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} :
∫⁻ (x : β), f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β), f xμ
@[simp]
theorem ProbabilityTheory.Kernel.setLIntegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ
@[deprecated ProbabilityTheory.Kernel.setLIntegral_const]
theorem ProbabilityTheory.Kernel.set_lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ

Alias of ProbabilityTheory.Kernel.setLIntegral_const.

def ProbabilityTheory.Kernel.ofFunOfCountable {α : Type u_1} {β : Type u_2} [MeasurableSpace α] :
{x : MeasurableSpace β} → [inst : Countable α] → [inst : MeasurableSingletonClass α] → (αMeasureTheory.Measure β)ProbabilityTheory.Kernel α β

In a countable space with measurable singletons, every function α → MeasureTheory.Measure β defines a kernel.

Equations
noncomputable def ProbabilityTheory.Kernel.restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) :

Kernel given by the restriction of the measures in the image of a kernel to a set.

Equations
  • κ.restrict hs = { toFun := fun (a : α) => (κ a).restrict s, measurable' := }
theorem ProbabilityTheory.Kernel.restrict_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) :
(κ.restrict hs) a = (κ a).restrict s
theorem ProbabilityTheory.Kernel.restrict_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} {t : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (ht : MeasurableSet t) :
((κ.restrict hs) a) t = (κ a) (t s)
@[simp]
theorem ProbabilityTheory.Kernel.restrict_univ {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} :
κ.restrict = κ
@[simp]
theorem ProbabilityTheory.Kernel.lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) :
∫⁻ (b : β), f b(κ.restrict hs) a = ∫⁻ (b : β) in s, f bκ a
@[simp]
theorem ProbabilityTheory.Kernel.setLIntegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a
@[deprecated ProbabilityTheory.Kernel.setLIntegral_restrict]
theorem ProbabilityTheory.Kernel.set_lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a

Alias of ProbabilityTheory.Kernel.setLIntegral_restrict.

Equations
  • =
noncomputable def ProbabilityTheory.Kernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) :

Kernel with value (κ a).comap f, for a measurable embedding f. That is, for a measurable set t : Set β, ProbabilityTheory.Kernel.comapRight κ hf a t = κ a (f '' t).

Equations
theorem ProbabilityTheory.Kernel.comapRight_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) :
(κ.comapRight hf) a = MeasureTheory.Measure.comap f (κ a)
theorem ProbabilityTheory.Kernel.comapRight_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) {t : Set γ} (ht : MeasurableSet t) :
((κ.comapRight hf) a) t = (κ a) (f '' t)
@[simp]
theorem ProbabilityTheory.Kernel.comapRight_id {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (κ : ProbabilityTheory.Kernel α β) :
κ.comapRight = κ
theorem ProbabilityTheory.Kernel.IsMarkovKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (hκ : ∀ (a : α), (κ a) (Set.range f) = 1) :
instance ProbabilityTheory.Kernel.IsFiniteKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] (hf : MeasurableEmbedding f) :
Equations
  • =
instance ProbabilityTheory.Kernel.IsSFiniteKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsSFiniteKernel κ] (hf : MeasurableEmbedding f) :
Equations
  • =
def ProbabilityTheory.Kernel.piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set α} [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) (κ : ProbabilityTheory.Kernel α β) (η : ProbabilityTheory.Kernel α β) :

ProbabilityTheory.Kernel.piecewise hs κ η is the kernel equal to κ on the measurable set s and to η on its complement.

Equations
theorem ProbabilityTheory.Kernel.piecewise_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) :
(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then κ a else η a
theorem ProbabilityTheory.Kernel.piecewise_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (t : Set β) :
((ProbabilityTheory.Kernel.piecewise hs κ η) a) t = if a s then (κ a) t else (η a) t
theorem ProbabilityTheory.Kernel.lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) :
∫⁻ (b : β), g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β), g bκ a else ∫⁻ (b : β), g bη a
theorem ProbabilityTheory.Kernel.setLIntegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a
@[deprecated ProbabilityTheory.Kernel.setLIntegral_piecewise]
theorem ProbabilityTheory.Kernel.set_lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a

Alias of ProbabilityTheory.Kernel.setLIntegral_piecewise.

theorem ProbabilityTheory.Kernel.exists_ae_eq_isMarkovKernel {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {μ : MeasureTheory.Measure α} (h : ∀ᵐ (a : α) ∂μ, MeasureTheory.IsProbabilityMeasure (κ a)) (h' : μ 0) :