Documentation

Mathlib.GroupTheory.Finiteness

Finitely generated monoids and groups #

We define finitely generated monoids and groups. See also Submodule.FG and Module.Finite for finitely-generated modules.

Main definition #

Monoids and submonoids #

def AddSubmonoid.FG {M : Type u_1} [AddMonoid M] (P : AddSubmonoid M) :

An additive submonoid of N is finitely generated if it is the closure of a finite subset of M.

Equations
def Submonoid.FG {M : Type u_1} [Monoid M] (P : Submonoid M) :

A submonoid of M is finitely generated if it is the closure of a finite subset of M.

Equations
theorem AddSubmonoid.fg_iff {M : Type u_1} [AddMonoid M] (P : AddSubmonoid M) :
P.FG ∃ (S : Set M), AddSubmonoid.closure S = P S.Finite

An equivalent expression of AddSubmonoid.FG in terms of Set.Finite instead of Finset.

theorem Submonoid.fg_iff {M : Type u_1} [Monoid M] (P : Submonoid M) :
P.FG ∃ (S : Set M), Submonoid.closure S = P S.Finite

An equivalent expression of Submonoid.FG in terms of Set.Finite instead of Finset.

theorem Submonoid.fg_iff_add_fg {M : Type u_1} [Monoid M] (P : Submonoid M) :
P.FG (Submonoid.toAddSubmonoid P).FG
theorem AddSubmonoid.fg_iff_mul_fg {N : Type u_2} [AddMonoid N] (P : AddSubmonoid N) :
P.FG (AddSubmonoid.toSubmonoid P).FG
class Monoid.FG (M : Type u_1) [Monoid M] :

A monoid is finitely generated if it is finitely generated as a submonoid of itself.

Instances
theorem Monoid.FG.out {M : Type u_1} :
∀ {inst : Monoid M} [self : Monoid.FG M], .FG
class AddMonoid.FG (N : Type u_2) [AddMonoid N] :

An additive monoid is finitely generated if it is finitely generated as an additive submonoid of itself.

Instances
theorem AddMonoid.FG.out {N : Type u_2} :
∀ {inst : AddMonoid N} [self : AddMonoid.FG N], .FG
theorem Monoid.fg_def {M : Type u_1} [Monoid M] :
theorem AddMonoid.fg_iff {M : Type u_1} [AddMonoid M] :
AddMonoid.FG M ∃ (S : Set M), AddSubmonoid.closure S = S.Finite

An equivalent expression of AddMonoid.FG in terms of Set.Finite instead of Finset.

theorem Monoid.fg_iff {M : Type u_1} [Monoid M] :
Monoid.FG M ∃ (S : Set M), Submonoid.closure S = S.Finite

An equivalent expression of Monoid.FG in terms of Set.Finite instead of Finset.

Equations
  • =
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 100]
instance Monoid.fg_of_finite {M : Type u_1} [Monoid M] [Finite M] :
Equations
  • =
theorem AddSubmonoid.FG.map {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (h : P.FG) (e : M →+ M') :
theorem Submonoid.FG.map {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (h : P.FG) (e : M →* M') :
(Submonoid.map e P).FG
theorem AddSubmonoid.FG.map_injective {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (e : M →+ M') (he : Function.Injective e) (h : (AddSubmonoid.map e P).FG) :
P.FG
theorem Submonoid.FG.map_injective {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (e : M →* M') (he : Function.Injective e) (h : (Submonoid.map e P).FG) :
P.FG
@[simp]
@[simp]
theorem Monoid.fg_iff_submonoid_fg {M : Type u_1} [Monoid M] (N : Submonoid M) :
Monoid.FG N N.FG
theorem AddMonoid.fg_of_surjective {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] [AddMonoid.FG M] (f : M →+ M') (hf : Function.Surjective f) :
theorem Monoid.fg_of_surjective {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] [Monoid.FG M] (f : M →* M') (hf : Function.Surjective f) :
instance AddMonoid.fg_range {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] [AddMonoid.FG M] (f : M →+ M') :
Equations
  • =
instance Monoid.fg_range {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] [Monoid.FG M] (f : M →* M') :
Equations
  • =
theorem Submonoid.powers_fg {M : Type u_1} [Monoid M] (r : M) :
Equations
  • =
instance Monoid.powers_fg {M : Type u_1} [Monoid M] (r : M) :
Equations
  • =
Equations
  • =
instance Monoid.closure_finset_fg {M : Type u_1} [Monoid M] (s : Finset M) :
Equations
  • =
Equations
  • =
instance Monoid.closure_finite_fg {M : Type u_1} [Monoid M] (s : Set M) [Finite s] :
Equations
  • =

Groups and subgroups #

def AddSubgroup.FG {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :

An additive subgroup of H is finitely generated if it is the closure of a finite subset of H.

Equations
def Subgroup.FG {G : Type u_3} [Group G] (P : Subgroup G) :

A subgroup of G is finitely generated if it is the closure of a finite subset of G.

Equations
theorem AddSubgroup.fg_iff {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :
P.FG ∃ (S : Set G), AddSubgroup.closure S = P S.Finite

An equivalent expression of AddSubgroup.fg in terms of Set.Finite instead of Finset.

theorem Subgroup.fg_iff {G : Type u_3} [Group G] (P : Subgroup G) :
P.FG ∃ (S : Set G), Subgroup.closure S = P S.Finite

An equivalent expression of Subgroup.FG in terms of Set.Finite instead of Finset.

theorem AddSubgroup.fg_iff_addSubmonoid_fg {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :
P.FG P.FG

An additive subgroup is finitely generated if and only if it is finitely generated as an additive submonoid.

theorem Subgroup.fg_iff_submonoid_fg {G : Type u_3} [Group G] (P : Subgroup G) :
P.FG P.FG

A subgroup is finitely generated if and only if it is finitely generated as a submonoid.

theorem Subgroup.fg_iff_add_fg {G : Type u_3} [Group G] (P : Subgroup G) :
P.FG (Subgroup.toAddSubgroup P).FG
theorem AddSubgroup.fg_iff_mul_fg {H : Type u_4} [AddGroup H] (P : AddSubgroup H) :
P.FG (AddSubgroup.toSubgroup P).FG
theorem Group.FG.out {G : Type u_3} :
∀ {inst : Group G} [self : Group.FG G], .FG
class AddGroup.FG (H : Type u_4) [AddGroup H] :

An additive group is finitely generated if it is finitely generated as an additive submonoid of itself.

Instances
theorem AddGroup.FG.out {H : Type u_4} :
∀ {inst : AddGroup H} [self : AddGroup.FG H], .FG
theorem Group.fg_def {G : Type u_3} [Group G] :
theorem AddGroup.fg_iff {G : Type u_3} [AddGroup G] :
AddGroup.FG G ∃ (S : Set G), AddSubgroup.closure S = S.Finite

An equivalent expression of AddGroup.fg in terms of Set.Finite instead of Finset.

theorem Group.fg_iff {G : Type u_3} [Group G] :
Group.FG G ∃ (S : Set G), Subgroup.closure S = S.Finite

An equivalent expression of Group.FG in terms of Set.Finite instead of Finset.

theorem AddGroup.fg_iff' {G : Type u_3} [AddGroup G] :
AddGroup.FG G ∃ (n : ) (S : Finset G), S.card = n AddSubgroup.closure S =
theorem Group.fg_iff' {G : Type u_3} [Group G] :
Group.FG G ∃ (n : ) (S : Finset G), S.card = n Subgroup.closure S =

An additive group is finitely generated if and only if it is finitely generated as an additive monoid.

A group is finitely generated if and only if it is finitely generated as a monoid.

@[simp]
theorem AddGroup.fg_iff_addSubgroup_fg {G : Type u_3} [AddGroup G] (H : AddSubgroup G) :
AddGroup.FG H H.FG
@[simp]
theorem Group.fg_iff_subgroup_fg {G : Type u_3} [Group G] (H : Subgroup G) :
Group.FG H H.FG
Equations
  • =
Equations
  • =
@[instance 100]
instance AddGroup.fg_of_finite {G : Type u_3} [AddGroup G] [Finite G] :
Equations
  • =
@[instance 100]
instance Group.fg_of_finite {G : Type u_3} [Group G] [Finite G] :
Equations
  • =
theorem AddGroup.fg_of_surjective {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [hG : AddGroup.FG G] {f : G →+ G'} (hf : Function.Surjective f) :
theorem Group.fg_of_surjective {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [hG : Group.FG G] {f : G →* G'} (hf : Function.Surjective f) :
instance AddGroup.fg_range {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] (f : G →+ G') :
AddGroup.FG f.range
Equations
  • =
instance Group.fg_range {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] (f : G →* G') :
Group.FG f.range
Equations
  • =
Equations
  • =
instance Group.closure_finset_fg {G : Type u_3} [Group G] (s : Finset G) :
Equations
  • =
instance AddGroup.closure_finite_fg {G : Type u_3} [AddGroup G] (s : Set G) [Finite s] :
Equations
  • =
instance Group.closure_finite_fg {G : Type u_3} [Group G] (s : Set G) [Finite s] :
Equations
  • =
theorem AddGroup.rank.proof_1 (G : Type u_1) [AddGroup G] [h : AddGroup.FG G] :
∃ (n : ) (S : Finset G), S.card = n AddSubgroup.closure S =
noncomputable def AddGroup.rank (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] :

The minimum number of generators of an additive group

Equations
noncomputable def Group.rank (G : Type u_3) [Group G] [h : Group.FG G] :

The minimum number of generators of a group.

Equations
theorem AddGroup.rank_spec (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] :
∃ (S : Finset G), S.card = AddGroup.rank G AddSubgroup.closure S =
theorem Group.rank_spec (G : Type u_3) [Group G] [h : Group.FG G] :
∃ (S : Finset G), S.card = Group.rank G Subgroup.closure S =
theorem AddGroup.rank_le (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] {S : Finset G} (hS : AddSubgroup.closure S = ) :
theorem Group.rank_le (G : Type u_3) [Group G] [h : Group.FG G] {S : Finset G} (hS : Subgroup.closure S = ) :
Group.rank G S.card
theorem Group.rank_le_of_surjective {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] [Group.FG G'] (f : G →* G') (hf : Function.Surjective f) :
theorem AddGroup.rank_range_le {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] {f : G →+ G'} :
theorem Group.rank_range_le {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] {f : G →* G'} :
theorem AddGroup.rank_congr {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] [AddGroup.FG G'] (f : G ≃+ G') :
theorem Group.rank_congr {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] [Group.FG G'] (f : G ≃* G') :
theorem AddSubgroup.rank_congr {G : Type u_3} [AddGroup G] {H : AddSubgroup G} {K : AddSubgroup G} [AddGroup.FG H] [AddGroup.FG K] (h : H = K) :
theorem Subgroup.rank_congr {G : Type u_3} [Group G] {H : Subgroup G} {K : Subgroup G} [Group.FG H] [Group.FG K] (h : H = K) :
instance QuotientAddGroup.fg {G : Type u_3} [AddGroup G] [AddGroup.FG G] (N : AddSubgroup G) [N.Normal] :
Equations
  • =
instance QuotientGroup.fg {G : Type u_3} [Group G] [Group.FG G] (N : Subgroup G) [N.Normal] :
Equations
  • =