Documentation

Mathlib.Algebra.Ring.Subring.Basic

Subrings #

Let R be a ring. This file defines the "bundled" subring type Subring R, a type whose terms correspond to subrings of R. This is the preferred way to talk about subrings in mathlib. Unbundled subrings (s : Set R and IsSubring s) are not in this file, and they will ultimately be deprecated.

We prove that subrings are a complete lattice, and that you can map (pushforward) and comap (pull back) them along ring homomorphisms.

We define the closure construction from Set R to Subring R, sending a subset of R to the subring it generates, and prove that it is a Galois insertion.

Main definitions #

Notation used here:

(R : Type u) [Ring R] (S : Type u) [Ring S] (f g : R →+* S) (A : Subring R) (B : Subring S) (s : Set R)

Implementation notes #

A subring is implemented as a subsemiring which is also an additive subgroup. The initial PR was as a submonoid which is also an additive subgroup.

Lattice inclusion (e.g. and ) is used rather than set notation ( and ), although is defined as membership of a subring's underlying set.

Tags #

subring, subrings

class SubringClass (S : Type u_1) (R : outParam (Type u)) [Ring R] [SetLike S R] extends SubsemiringClass , NegMemClass :

SubringClass S R states that S is a type of subsets s ⊆ R that are both a multiplicative submonoid and an additive subgroup.

    Instances
    @[instance 100]
    instance SubringClass.addSubgroupClass (S : Type u_1) (R : Type u) [SetLike S R] [Ring R] [h : SubringClass S R] :
    Equations
    • =
    theorem intCast_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n s
    @[deprecated intCast_mem]
    theorem coe_int_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n s

    Alias of intCast_mem.

    @[instance 75]
    instance SubringClass.toHasIntCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    IntCast s
    Equations
    @[instance 75]
    instance SubringClass.toRing {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    Ring s

    A subring of a ring inherits a ring structure

    Equations
    @[instance 75]
    instance SubringClass.toCommRing {S : Type v} (s : S) {R : Type u_1} [CommRing R] [SetLike S R] [SubringClass S R] :

    A subring of a CommRing is a CommRing.

    Equations
    @[instance 75]
    instance SubringClass.instIsDomainSubtypeMem {S : Type v} (s : S) {R : Type u_1} [Ring R] [IsDomain R] [SetLike S R] [SubringClass S R] :

    A subring of a domain is a domain.

    Equations
    • =
    def SubringClass.subtype {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    s →+* R

    The natural ring hom from a subring of ring R to R.

    Equations
    • SubringClass.subtype s = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
    @[simp]
    theorem SubringClass.coeSubtype {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) :
    (SubringClass.subtype s) = Subtype.val
    @[simp]
    theorem SubringClass.coe_natCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n = n
    @[simp]
    theorem SubringClass.coe_intCast {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
    n = n
    structure Subring (R : Type u) [Ring R] extends Subsemiring :

    Subring R is the type of subrings of R. A subring of R is a subset s that is a multiplicative submonoid and an additive subgroup. Note in particular that it shares the same 0 and 1 as R.

    • carrier : Set R
    • mul_mem' : ∀ {a b : R}, a self.carrierb self.carriera * b self.carrier
    • one_mem' : 1 self.carrier
    • add_mem' : ∀ {a b : R}, a self.carrierb self.carriera + b self.carrier
    • zero_mem' : 0 self.carrier
    • neg_mem' : ∀ {x : R}, x self.carrier-x self.carrier

      G is closed under negation

    Instances For
    @[reducible]
    abbrev Subring.toAddSubgroup {R : Type u} [Ring R] (self : Subring R) :

    Reinterpret a Subring as an AddSubgroup.

    Equations
    • self.toAddSubgroup = { carrier := self.carrier, add_mem' := , zero_mem' := , neg_mem' := }
    instance Subring.instSetLike {R : Type u} [Ring R] :
    Equations
    • Subring.instSetLike = { coe := fun (s : Subring R) => s.carrier, coe_injective' := }
    Equations
    • =
    @[simp]
    theorem Subring.mem_toSubsemiring {R : Type u} [Ring R] {s : Subring R} {x : R} :
    x s.toSubsemiring x s
    theorem Subring.mem_carrier {R : Type u} [Ring R] {s : Subring R} {x : R} :
    x s.carrier x s
    @[simp]
    theorem Subring.mem_mk {R : Type u} [Ring R] {S : Subsemiring R} {x : R} (h : ∀ {x : R}, x S.carrier-x S.carrier) :
    x { toSubsemiring := S, neg_mem' := h } x S
    @[simp]
    theorem Subring.coe_set_mk {R : Type u} [Ring R] (S : Subsemiring R) (h : ∀ {x : R}, x S.carrier-x S.carrier) :
    { toSubsemiring := S, neg_mem' := h } = S
    @[simp]
    theorem Subring.mk_le_mk {R : Type u} [Ring R] {S : Subsemiring R} {S' : Subsemiring R} (h₁ : ∀ {x : R}, x S.carrier-x S.carrier) (h₂ : ∀ {x : R}, x S'.carrier-x S'.carrier) :
    { toSubsemiring := S, neg_mem' := h₁ } { toSubsemiring := S', neg_mem' := h₂ } S S'
    theorem Subring.ext_iff {R : Type u} [Ring R] {S : Subring R} {T : Subring R} :
    S = T ∀ (x : R), x S x T
    theorem Subring.ext {R : Type u} [Ring R] {S : Subring R} {T : Subring R} (h : ∀ (x : R), x S x T) :
    S = T

    Two subrings are equal if they have the same elements.

    def Subring.copy {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :

    Copy of a subring with a new carrier equal to the old one. Useful to fix definitional equalities.

    Equations
    • S.copy s hs = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem Subring.coe_copy {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :
    (S.copy s hs) = s
    theorem Subring.copy_eq {R : Type u} [Ring R] (S : Subring R) (s : Set R) (hs : s = S) :
    S.copy s hs = S
    theorem Subring.toSubsemiring_injective {R : Type u} [Ring R] :
    Function.Injective Subring.toSubsemiring
    theorem Subring.toSubsemiring_strictMono {R : Type u} [Ring R] :
    StrictMono Subring.toSubsemiring
    theorem Subring.toSubsemiring_mono {R : Type u} [Ring R] :
    Monotone Subring.toSubsemiring
    theorem Subring.toAddSubgroup_injective {R : Type u} [Ring R] :
    Function.Injective Subring.toAddSubgroup
    theorem Subring.toAddSubgroup_strictMono {R : Type u} [Ring R] :
    StrictMono Subring.toAddSubgroup
    theorem Subring.toAddSubgroup_mono {R : Type u} [Ring R] :
    Monotone Subring.toAddSubgroup
    theorem Subring.toSubmonoid_injective {R : Type u} [Ring R] :
    Function.Injective fun (s : Subring R) => s.toSubmonoid
    theorem Subring.toSubmonoid_strictMono {R : Type u} [Ring R] :
    StrictMono fun (s : Subring R) => s.toSubmonoid
    theorem Subring.toSubmonoid_mono {R : Type u} [Ring R] :
    Monotone fun (s : Subring R) => s.toSubmonoid
    def Subring.mk' {R : Type u} [Ring R] (s : Set R) (sm : Submonoid R) (sa : AddSubgroup R) (hm : sm = s) (ha : sa = s) :

    Construct a Subring R from a set s, a submonoid sm, and an additive subgroup sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

    Equations
    • Subring.mk' s sm sa hm ha = { toSubmonoid := sm.copy s , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem Subring.coe_mk' {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
    (Subring.mk' s sm sa hm ha) = s
    @[simp]
    theorem Subring.mem_mk' {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) {x : R} :
    x Subring.mk' s sm sa hm ha x s
    @[simp]
    theorem Subring.mk'_toSubmonoid {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
    (Subring.mk' s sm sa hm ha).toSubmonoid = sm
    @[simp]
    theorem Subring.mk'_toAddSubgroup {R : Type u} [Ring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
    (Subring.mk' s sm sa hm ha).toAddSubgroup = sa
    def Subsemiring.toSubring {R : Type u} [Ring R] (s : Subsemiring R) (hneg : -1 s) :

    A Subsemiring containing -1 is a Subring.

    Equations
    • s.toSubring hneg = { toSubsemiring := s, neg_mem' := }
    theorem Subring.one_mem {R : Type u} [Ring R] (s : Subring R) :
    1 s

    A subring contains the ring's 1.

    theorem Subring.zero_mem {R : Type u} [Ring R] (s : Subring R) :
    0 s

    A subring contains the ring's 0.

    theorem Subring.mul_mem {R : Type u} [Ring R] (s : Subring R) {x : R} {y : R} :
    x sy sx * y s

    A subring is closed under multiplication.

    theorem Subring.add_mem {R : Type u} [Ring R] (s : Subring R) {x : R} {y : R} :
    x sy sx + y s

    A subring is closed under addition.

    theorem Subring.neg_mem {R : Type u} [Ring R] (s : Subring R) {x : R} :
    x s-x s

    A subring is closed under negation.

    theorem Subring.sub_mem {R : Type u} [Ring R] (s : Subring R) {x : R} {y : R} (hx : x s) (hy : y s) :
    x - y s

    A subring is closed under subtraction

    theorem Subring.list_prod_mem {R : Type u} [Ring R] (s : Subring R) {l : List R} :
    (∀ xl, x s)l.prod s

    Product of a list of elements in a subring is in the subring.

    theorem Subring.list_sum_mem {R : Type u} [Ring R] (s : Subring R) {l : List R} :
    (∀ xl, x s)l.sum s

    Sum of a list of elements in a subring is in the subring.

    theorem Subring.multiset_prod_mem {R : Type u_1} [CommRing R] (s : Subring R) (m : Multiset R) :
    (∀ am, a s)m.prod s

    Product of a multiset of elements in a subring of a CommRing is in the subring.

    theorem Subring.multiset_sum_mem {R : Type u_1} [Ring R] (s : Subring R) (m : Multiset R) :
    (∀ am, a s)m.sum s

    Sum of a multiset of elements in a Subring of a Ring is in the Subring.

    theorem Subring.prod_mem {R : Type u_1} [CommRing R] (s : Subring R) {ι : Type u_2} {t : Finset ι} {f : ιR} (h : ct, f c s) :
    it, f i s

    Product of elements of a subring of a CommRing indexed by a Finset is in the subring.

    theorem Subring.sum_mem {R : Type u_1} [Ring R] (s : Subring R) {ι : Type u_2} {t : Finset ι} {f : ιR} (h : ct, f c s) :
    it, f i s

    Sum of elements in a Subring of a Ring indexed by a Finset is in the Subring.

    instance Subring.toRing {R : Type u} [Ring R] (s : Subring R) :
    Ring s

    A subring of a ring inherits a ring structure

    Equations
    theorem Subring.zsmul_mem {R : Type u} [Ring R] (s : Subring R) {x : R} (hx : x s) (n : ) :
    n x s
    theorem Subring.pow_mem {R : Type u} [Ring R] (s : Subring R) {x : R} (hx : x s) (n : ) :
    x ^ n s
    @[simp]
    theorem Subring.coe_add {R : Type u} [Ring R] (s : Subring R) (x : s) (y : s) :
    (x + y) = x + y
    @[simp]
    theorem Subring.coe_neg {R : Type u} [Ring R] (s : Subring R) (x : s) :
    (-x) = -x
    @[simp]
    theorem Subring.coe_mul {R : Type u} [Ring R] (s : Subring R) (x : s) (y : s) :
    (x * y) = x * y
    @[simp]
    theorem Subring.coe_zero {R : Type u} [Ring R] (s : Subring R) :
    0 = 0
    @[simp]
    theorem Subring.coe_one {R : Type u} [Ring R] (s : Subring R) :
    1 = 1
    @[simp]
    theorem Subring.coe_pow {R : Type u} [Ring R] (s : Subring R) (x : s) (n : ) :
    (x ^ n) = x ^ n
    theorem Subring.coe_eq_zero_iff {R : Type u} [Ring R] (s : Subring R) {x : s} :
    x = 0 x = 0
    instance Subring.toCommRing {R : Type u_1} [CommRing R] (s : Subring R) :

    A subring of a CommRing is a CommRing.

    Equations
    instance Subring.instNontrivialSubtypeMem {R : Type u_1} [Ring R] [Nontrivial R] (s : Subring R) :

    A subring of a non-trivial ring is non-trivial.

    Equations
    • =

    A subring of a ring with no zero divisors has no zero divisors.

    Equations
    • =
    instance Subring.instIsDomainSubtypeMem {R : Type u_1} [Ring R] [IsDomain R] (s : Subring R) :

    A subring of a domain is a domain.

    Equations
    • =
    def Subring.subtype {R : Type u} [Ring R] (s : Subring R) :
    s →+* R

    The natural ring hom from a subring of ring R to R.

    Equations
    • s.subtype = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
    @[simp]
    theorem Subring.coeSubtype {R : Type u} [Ring R] (s : Subring R) :
    s.subtype = Subtype.val
    theorem Subring.coe_natCast {R : Type u} [Ring R] (s : Subring R) (n : ) :
    n = n
    theorem Subring.coe_intCast {R : Type u} [Ring R] (s : Subring R) (n : ) :
    n = n

    Partial order #

    @[simp]
    theorem Subring.coe_toSubsemiring {R : Type u} [Ring R] (s : Subring R) :
    s.toSubsemiring = s
    @[simp]
    theorem Subring.mem_toSubmonoid {R : Type u} [Ring R] {s : Subring R} {x : R} :
    x s.toSubmonoid x s
    @[simp]
    theorem Subring.coe_toSubmonoid {R : Type u} [Ring R] (s : Subring R) :
    s.toSubmonoid = s
    @[simp]
    theorem Subring.mem_toAddSubgroup {R : Type u} [Ring R] {s : Subring R} {x : R} :
    x s.toAddSubgroup x s
    @[simp]
    theorem Subring.coe_toAddSubgroup {R : Type u} [Ring R] (s : Subring R) :
    s.toAddSubgroup = s

    top #

    instance Subring.instTop {R : Type u} [Ring R] :

    The subring R of the ring R.

    Equations
    • Subring.instTop = { top := let __src := ; let __src_1 := ; { toSubmonoid := __src, add_mem' := , zero_mem' := , neg_mem' := } }
    @[simp]
    theorem Subring.mem_top {R : Type u} [Ring R] (x : R) :
    @[simp]
    theorem Subring.coe_top {R : Type u} [Ring R] :
    = Set.univ
    @[simp]
    theorem Subring.topEquiv_apply {R : Type u} [Ring R] (r : ) :
    Subring.topEquiv r = r
    @[simp]
    theorem Subring.topEquiv_symm_apply_coe {R : Type u} [Ring R] (r : R) :
    (Subring.topEquiv.symm r) = r
    def Subring.topEquiv {R : Type u} [Ring R] :
    ≃+* R

    The ring equiv between the top element of Subring R and R.

    Equations
    • Subring.topEquiv = Subsemiring.topEquiv
    Equations

    comap #

    def Subring.comap {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Subring S) :

    The preimage of a subring along a ring homomorphism is a subring.

    Equations
    • Subring.comap f s = { carrier := f ⁻¹' s.carrier, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem Subring.coe_comap {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring S) (f : R →+* S) :
    (Subring.comap f s) = f ⁻¹' s
    @[simp]
    theorem Subring.mem_comap {R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring S} {f : R →+* S} {x : R} :
    x Subring.comap f s f x s
    theorem Subring.comap_comap {R : Type u} {S : Type v} {T : Type w} [Ring R] [Ring S] [Ring T] (s : Subring T) (g : S →+* T) (f : R →+* S) :

    map #

    def Subring.map {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Subring R) :

    The image of a subring along a ring homomorphism is a subring.

    Equations
    • Subring.map f s = { carrier := f '' s.carrier, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem Subring.coe_map {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Subring R) :
    (Subring.map f s) = f '' s
    @[simp]
    theorem Subring.mem_map {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} {s : Subring R} {y : S} :
    y Subring.map f s xs, f x = y
    @[simp]
    theorem Subring.map_id {R : Type u} [Ring R] (s : Subring R) :
    theorem Subring.map_map {R : Type u} {S : Type v} {T : Type w} [Ring R] [Ring S] [Ring T] (s : Subring R) (g : S →+* T) (f : R →+* S) :
    Subring.map g (Subring.map f s) = Subring.map (g.comp f) s
    theorem Subring.map_le_iff_le_comap {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} {s : Subring R} {t : Subring S} :
    theorem Subring.gc_map_comap {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    noncomputable def Subring.equivMapOfInjective {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (f : R →+* S) (hf : Function.Injective f) :
    s ≃+* (Subring.map f s)

    A subring is isomorphic to its image under an injective function

    Equations
    • s.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑s) hf, map_mul' := , map_add' := }
    @[simp]
    theorem Subring.coe_equivMapOfInjective_apply {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (f : R →+* S) (hf : Function.Injective f) (x : s) :
    ((s.equivMapOfInjective f hf) x) = f x

    range #

    def RingHom.range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :

    The range of a ring homomorphism, as a subring of the target. See Note [range copy pattern].

    Equations
    @[simp]
    theorem RingHom.coe_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    f.range = Set.range f
    @[simp]
    theorem RingHom.mem_range {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} {y : S} :
    y f.range ∃ (x : R), f x = y
    theorem RingHom.range_eq_map {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    f.range = Subring.map f
    theorem RingHom.mem_range_self {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (x : R) :
    f x f.range
    theorem RingHom.map_range {R : Type u} {S : Type v} {T : Type w} [Ring R] [Ring S] [Ring T] (g : S →+* T) (f : R →+* S) :
    Subring.map g f.range = (g.comp f).range
    instance RingHom.fintypeRange {R : Type u} {S : Type v} [Ring R] [Ring S] [Fintype R] [DecidableEq S] (f : R →+* S) :
    Fintype f.range

    The range of a ring homomorphism is a fintype, if the domain is a fintype. Note: this instance can form a diamond with Subtype.fintype in the presence of Fintype S.

    Equations

    bot #

    instance Subring.instBot {R : Type u} [Ring R] :
    Equations
    instance Subring.instInhabited {R : Type u} [Ring R] :
    Equations
    • Subring.instInhabited = { default := }
    theorem Subring.coe_bot {R : Type u} [Ring R] :
    = Set.range Int.cast
    theorem Subring.mem_bot {R : Type u} [Ring R] {x : R} :
    x ∃ (n : ), n = x

    inf #

    instance Subring.instInf {R : Type u} [Ring R] :

    The inf of two subrings is their intersection.

    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem Subring.coe_inf {R : Type u} [Ring R] (p : Subring R) (p' : Subring R) :
    (p p') = p p'
    @[simp]
    theorem Subring.mem_inf {R : Type u} [Ring R] {p : Subring R} {p' : Subring R} {x : R} :
    x p p' x p x p'
    instance Subring.instInfSet {R : Type u} [Ring R] :
    Equations
    • Subring.instInfSet = { sInf := fun (s : Set (Subring R)) => Subring.mk' (⋂ ts, t) (⨅ ts, t.toSubmonoid) (⨅ ts, t.toAddSubgroup) }
    @[simp]
    theorem Subring.coe_sInf {R : Type u} [Ring R] (S : Set (Subring R)) :
    (sInf S) = sS, s
    theorem Subring.mem_sInf {R : Type u} [Ring R] {S : Set (Subring R)} {x : R} :
    x sInf S pS, x p
    @[simp]
    theorem Subring.coe_iInf {R : Type u} [Ring R] {ι : Sort u_1} {S : ιSubring R} :
    (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
    theorem Subring.mem_iInf {R : Type u} [Ring R] {ι : Sort u_1} {S : ιSubring R} {x : R} :
    x ⨅ (i : ι), S i ∀ (i : ι), x S i
    @[simp]
    theorem Subring.sInf_toSubmonoid {R : Type u} [Ring R] (s : Set (Subring R)) :
    (sInf s).toSubmonoid = ts, t.toSubmonoid
    @[simp]
    theorem Subring.sInf_toAddSubgroup {R : Type u} [Ring R] (s : Set (Subring R)) :
    (sInf s).toAddSubgroup = ts, t.toAddSubgroup

    Subrings of a ring form a complete lattice.

    Equations
    theorem Subring.eq_top_iff' {R : Type u} [Ring R] (A : Subring R) :
    A = ∀ (x : R), x A

    Center of a ring #

    def Subring.center (R : Type u) [Ring R] :

    The center of a ring R is the set of elements that commute with everything in R

    Equations
    • Subring.center R = { carrier := Set.center R, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem Subring.center_toSubsemiring (R : Type u) [Ring R] :
    (Subring.center R).toSubsemiring = Subsemiring.center R
    theorem Subring.mem_center_iff {R : Type u} [Ring R] {z : R} :
    z Subring.center R ∀ (g : R), g * z = z * g
    instance Subring.decidableMemCenter {R : Type u} [Ring R] [DecidableEq R] [Fintype R] :
    DecidablePred fun (x : R) => x Subring.center R
    Equations
    @[simp]

    The center is commutative.

    Equations
    Equations
    @[simp]
    theorem Subring.center.coe_inv {K : Type u} [DivisionRing K] (a : (Subring.center K)) :
    a⁻¹ = (↑a)⁻¹
    @[simp]
    theorem Subring.center.coe_div {K : Type u} [DivisionRing K] (a : (Subring.center K)) (b : (Subring.center K)) :
    (a / b) = a / b
    def Subring.centralizer {R : Type u} [Ring R] (s : Set R) :

    The centralizer of a set inside a ring as a Subring.

    Equations
    @[simp]
    theorem Subring.coe_centralizer {R : Type u} [Ring R] (s : Set R) :
    (Subring.centralizer s) = s.centralizer
    theorem Subring.mem_centralizer_iff {R : Type u} [Ring R] {s : Set R} {z : R} :
    z Subring.centralizer s gs, g * z = z * g
    theorem Subring.centralizer_le {R : Type u} [Ring R] (s : Set R) (t : Set R) (h : s t) :

    subring closure of a subset #

    def Subring.closure {R : Type u} [Ring R] (s : Set R) :

    The Subring generated by a set.

    Equations
    theorem Subring.mem_closure {R : Type u} [Ring R] {x : R} {s : Set R} :
    x Subring.closure s ∀ (S : Subring R), s Sx S
    @[simp]
    theorem Subring.subset_closure {R : Type u} [Ring R] {s : Set R} :

    The subring generated by a set includes the set.

    theorem Subring.not_mem_of_not_mem_closure {R : Type u} [Ring R] {s : Set R} {P : R} (hP : PSubring.closure s) :
    Ps
    @[simp]
    theorem Subring.closure_le {R : Type u} [Ring R] {s : Set R} {t : Subring R} :

    A subring t includes closure s if and only if it includes s.

    theorem Subring.closure_mono {R : Type u} [Ring R] ⦃s : Set R ⦃t : Set R (h : s t) :

    Subring closure of a set is monotone in its argument: if s ⊆ t, then closure s ≤ closure t.

    theorem Subring.closure_eq_of_le {R : Type u} [Ring R] {s : Set R} {t : Subring R} (h₁ : s t) (h₂ : t Subring.closure s) :
    theorem Subring.closure_induction {R : Type u} [Ring R] {s : Set R} {p : RProp} {x : R} (h : x Subring.closure s) (Hs : xs, p x) (zero : p 0) (one : p 1) (add : ∀ (x y : R), p xp yp (x + y)) (neg : ∀ (x : R), p xp (-x)) (mul : ∀ (x y : R), p xp yp (x * y)) :
    p x

    An induction principle for closure membership. If p holds for 0, 1, and all elements of s, and is preserved under addition, negation, and multiplication, then p holds for all elements of the closure of s.

    theorem Subring.closure_induction' {R : Type u} [Ring R] {s : Set R} {p : (x : R) → x Subring.closure sProp} (mem : ∀ (x : R) (h : x s), p x ) (zero : p 0 ) (one : p 1 ) (add : ∀ (x : R) (hx : x Subring.closure s) (y : R) (hy : y Subring.closure s), p x hxp y hyp (x + y) ) (neg : ∀ (x : R) (hx : x Subring.closure s), p x hxp (-x) ) (mul : ∀ (x : R) (hx : x Subring.closure s) (y : R) (hy : y Subring.closure s), p x hxp y hyp (x * y) ) {a : R} (ha : a Subring.closure s) :
    p a ha
    theorem Subring.closure_induction₂ {R : Type u} [Ring R] {s : Set R} {p : RRProp} {a : R} {b : R} (ha : a Subring.closure s) (hb : b Subring.closure s) (Hs : xs, ys, p x y) (H0_left : ∀ (x : R), p 0 x) (H0_right : ∀ (x : R), p x 0) (H1_left : ∀ (x : R), p 1 x) (H1_right : ∀ (x : R), p x 1) (Hneg_left : ∀ (x y : R), p x yp (-x) y) (Hneg_right : ∀ (x y : R), p x yp x (-y)) (Hadd_left : ∀ (x₁ x₂ y : R), p x₁ yp x₂ yp (x₁ + x₂) y) (Hadd_right : ∀ (x y₁ y₂ : R), p x y₁p x y₂p x (y₁ + y₂)) (Hmul_left : ∀ (x₁ x₂ y : R), p x₁ yp x₂ yp (x₁ * x₂) y) (Hmul_right : ∀ (x y₁ y₂ : R), p x y₁p x y₂p x (y₁ * y₂)) :
    p a b

    An induction principle for closure membership, for predicates with two arguments.

    def Subring.closureCommRingOfComm {R : Type u} [Ring R] {s : Set R} (hcomm : as, bs, a * b = b * a) :

    If all elements of s : Set A commute pairwise, then closure s is a commutative ring.

    Equations
    theorem Subring.exists_list_of_mem_closure {R : Type u} [Ring R] {s : Set R} {x : R} (h : x Subring.closure s) :
    ∃ (L : List (List R)), (∀ tL, yt, y s y = -1) (List.map List.prod L).sum = x
    def Subring.gi (R : Type u) [Ring R] :
    GaloisInsertion Subring.closure SetLike.coe

    closure forms a Galois insertion with the coercion to set.

    Equations
    theorem Subring.closure_eq {R : Type u} [Ring R] (s : Subring R) :

    Closure of a subring S equals S.

    @[simp]
    theorem Subring.closure_univ {R : Type u} [Ring R] :
    theorem Subring.closure_iUnion {R : Type u} [Ring R] {ι : Sort u_1} (s : ιSet R) :
    Subring.closure (⋃ (i : ι), s i) = ⨆ (i : ι), Subring.closure (s i)
    theorem Subring.closure_sUnion {R : Type u} [Ring R] (s : Set (Set R)) :
    theorem Subring.map_sup {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring R) (f : R →+* S) :
    theorem Subring.map_iSup {R : Type u} {S : Type v} [Ring R] [Ring S] {ι : Sort u_1} (f : R →+* S) (s : ιSubring R) :
    Subring.map f (iSup s) = ⨆ (i : ι), Subring.map f (s i)
    theorem Subring.map_inf {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring R) (f : R →+* S) (hf : Function.Injective f) :
    theorem Subring.map_iInf {R : Type u} {S : Type v} [Ring R] [Ring S] {ι : Sort u_1} [Nonempty ι] (f : R →+* S) (hf : Function.Injective f) (s : ιSubring R) :
    Subring.map f (iInf s) = ⨅ (i : ι), Subring.map f (s i)
    theorem Subring.comap_inf {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring S) (t : Subring S) (f : R →+* S) :
    theorem Subring.comap_iInf {R : Type u} {S : Type v} [Ring R] [Ring S] {ι : Sort u_1} (f : R →+* S) (s : ιSubring S) :
    Subring.comap f (iInf s) = ⨅ (i : ι), Subring.comap f (s i)
    @[simp]
    theorem Subring.map_bot {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    @[simp]
    theorem Subring.comap_top {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    def Subring.prod {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring S) :
    Subring (R × S)

    Given Subrings s, t of rings R, S respectively, s.prod t is s ×̂ t as a subring of R × S.

    Equations
    • s.prod t = { carrier := s ×ˢ t, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    theorem Subring.coe_prod {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring S) :
    (s.prod t) = s ×ˢ t
    theorem Subring.mem_prod {R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring R} {t : Subring S} {p : R × S} :
    p s.prod t p.1 s p.2 t
    theorem Subring.prod_mono {R : Type u} {S : Type v} [Ring R] [Ring S] ⦃s₁ : Subring R ⦃s₂ : Subring R (hs : s₁ s₂) ⦃t₁ : Subring S ⦃t₂ : Subring S (ht : t₁ t₂) :
    s₁.prod t₁ s₂.prod t₂
    theorem Subring.prod_mono_right {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) :
    Monotone fun (t : Subring S) => s.prod t
    theorem Subring.prod_mono_left {R : Type u} {S : Type v} [Ring R] [Ring S] (t : Subring S) :
    Monotone fun (s : Subring R) => s.prod t
    theorem Subring.prod_top {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) :
    theorem Subring.top_prod {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring S) :
    @[simp]
    theorem Subring.top_prod_top {R : Type u} {S : Type v} [Ring R] [Ring S] :
    .prod =
    def Subring.prodEquiv {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring S) :
    (s.prod t) ≃+* s × t

    Product of subrings is isomorphic to their product as rings.

    Equations
    • s.prodEquiv t = { toEquiv := Equiv.Set.prod s t, map_mul' := , map_add' := }
    theorem Subring.mem_iSup_of_directed {R : Type u} [Ring R] {ι : Sort u_1} [hι : Nonempty ι] {S : ιSubring R} (hS : Directed (fun (x1 x2 : Subring R) => x1 x2) S) {x : R} :
    x ⨆ (i : ι), S i ∃ (i : ι), x S i

    The underlying set of a non-empty directed sSup of subrings is just a union of the subrings. Note that this fails without the directedness assumption (the union of two subrings is typically not a subring)

    theorem Subring.coe_iSup_of_directed {R : Type u} [Ring R] {ι : Sort u_1} [hι : Nonempty ι] {S : ιSubring R} (hS : Directed (fun (x1 x2 : Subring R) => x1 x2) S) :
    (⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
    theorem Subring.mem_sSup_of_directedOn {R : Type u} [Ring R] {S : Set (Subring R)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : Subring R) => x1 x2) S) {x : R} :
    x sSup S sS, x s
    theorem Subring.coe_sSup_of_directedOn {R : Type u} [Ring R] {S : Set (Subring R)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : Subring R) => x1 x2) S) :
    (sSup S) = sS, s
    theorem Subring.mem_map_equiv {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R ≃+* S} {K : Subring R} {x : S} :
    x Subring.map (↑f) K f.symm x K
    theorem Subring.map_equiv_eq_comap_symm {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R ≃+* S) (K : Subring R) :
    Subring.map (↑f) K = Subring.comap (↑f.symm) K
    theorem Subring.comap_equiv_eq_map_symm {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R ≃+* S) (K : Subring S) :
    Subring.comap (↑f) K = Subring.map (↑f.symm) K
    def RingHom.rangeRestrict {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    R →+* f.range

    Restriction of a ring homomorphism to its range interpreted as a subsemiring.

    This is the bundled version of Set.rangeFactorization.

    Equations
    • f.rangeRestrict = f.codRestrict f.range
    @[simp]
    theorem RingHom.coe_rangeRestrict {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (x : R) :
    (f.rangeRestrict x) = f x
    theorem RingHom.rangeRestrict_surjective {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
    Function.Surjective f.rangeRestrict
    theorem RingHom.range_top_iff_surjective {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} :
    @[simp]
    theorem RingHom.range_top_of_surjective {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (hf : Function.Surjective f) :
    f.range =

    The range of a surjective ring homomorphism is the whole of the codomain.

    def RingHom.eqLocus {R : Type u} [Ring R] {S : Type v} [Semiring S] (f : R →+* S) (g : R →+* S) :

    The subring of elements x : R such that f x = g x, i.e., the equalizer of f and g as a subring of R

    Equations
    • f.eqLocus g = { carrier := {x : R | f x = g x}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := }
    @[simp]
    theorem RingHom.eqLocus_same {R : Type u} [Ring R] {S : Type v} [Semiring S] (f : R →+* S) :
    f.eqLocus f =
    theorem RingHom.eqOn_set_closure {R : Type u} [Ring R] {S : Type v} [Semiring S] {f : R →+* S} {g : R →+* S} {s : Set R} (h : Set.EqOn (⇑f) (⇑g) s) :
    Set.EqOn f g (Subring.closure s)

    If two ring homomorphisms are equal on a set, then they are equal on its subring closure.

    theorem RingHom.eq_of_eqOn_set_top {R : Type u} [Ring R] {S : Type v} [Semiring S] {f : R →+* S} {g : R →+* S} (h : Set.EqOn f g ) :
    f = g
    theorem RingHom.eq_of_eqOn_set_dense {R : Type u} [Ring R] {S : Type v} [Semiring S] {s : Set R} (hs : Subring.closure s = ) {f : R →+* S} {g : R →+* S} (h : Set.EqOn (⇑f) (⇑g) s) :
    f = g
    theorem RingHom.closure_preimage_le {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Set S) :
    theorem RingHom.map_closure {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Set R) :

    The image under a ring homomorphism of the subring generated by a set equals the subring generated by the image of the set.

    def Subring.inclusion {R : Type u} [Ring R] {S : Subring R} {T : Subring R} (h : S T) :
    S →+* T

    The ring homomorphism associated to an inclusion of subrings.

    Equations
    @[simp]
    theorem Subring.range_subtype {R : Type u} [Ring R] (s : Subring R) :
    s.subtype.range = s
    theorem Subring.range_fst {R : Type u} {S : Type v} [Ring R] [Ring S] :
    (RingHom.fst R S).rangeS =
    theorem Subring.range_snd {R : Type u} {S : Type v} [Ring R] [Ring S] :
    (RingHom.snd R S).rangeS =
    @[simp]
    theorem Subring.prod_bot_sup_bot_prod {R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (t : Subring S) :
    s.prod .prod t = s.prod t
    def RingEquiv.subringCongr {R : Type u} [Ring R] {s : Subring R} {t : Subring R} (h : s = t) :
    s ≃+* t

    Makes the identity isomorphism from a proof two subrings of a multiplicative monoid are equal.

    Equations
    def RingEquiv.ofLeftInverse {R : Type u} {S : Type v} [Ring R] [Ring S] {g : SR} {f : R →+* S} (h : Function.LeftInverse g f) :
    R ≃+* f.range

    Restrict a ring homomorphism with a left inverse to a ring isomorphism to its RingHom.range.

    Equations
    • RingEquiv.ofLeftInverse h = { toFun := fun (x : R) => f.rangeRestrict x, invFun := fun (x : f.range) => (g f.range.subtype) x, left_inv := h, right_inv := , map_mul' := , map_add' := }
    @[simp]
    theorem RingEquiv.ofLeftInverse_apply {R : Type u} {S : Type v} [Ring R] [Ring S] {g : SR} {f : R →+* S} (h : Function.LeftInverse g f) (x : R) :
    ((RingEquiv.ofLeftInverse h) x) = f x
    @[simp]
    theorem RingEquiv.ofLeftInverse_symm_apply {R : Type u} {S : Type v} [Ring R] [Ring S] {g : SR} {f : R →+* S} (h : Function.LeftInverse g f) (x : f.range) :
    (RingEquiv.ofLeftInverse h).symm x = g x
    @[simp]
    theorem RingEquiv.subringMap_apply_coe {R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring R} (e : R ≃+* S) (x : s.toAddSubmonoid) :
    (e.subringMap x) = e x
    @[simp]
    theorem RingEquiv.subringMap_symm_apply_coe {R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring R} (e : R ≃+* S) (y : (e.toAddEquiv '' s.toAddSubmonoid)) :
    (e.subringMap.symm y) = (↑e).symm y
    def RingEquiv.subringMap {R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring R} (e : R ≃+* S) :
    s ≃+* (Subring.map e.toRingHom s)

    Given an equivalence e : R ≃+* S of rings and a subring s of R, subringMap e s is the induced equivalence between s and s.map e

    Equations
    • e.subringMap = e.subsemiringMap s.toSubsemiring
    theorem Subring.InClosure.recOn {R : Type u} [Ring R] {s : Set R} {C : RProp} {x : R} (hx : x Subring.closure s) (h1 : C 1) (hneg1 : C (-1)) (hs : zs, ∀ (n : R), C nC (z * n)) (ha : ∀ {x y : R}, C xC yC (x + y)) :
    C x
    theorem Subring.closure_preimage_le {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Set S) :
    theorem AddSubgroup.int_mul_mem {R : Type u} [Ring R] {G : AddSubgroup R} (k : ) {g : R} (h : g G) :
    k * g G

    Actions by Subrings #

    These are just copies of the definitions about Subsemiring starting from Subsemiring.MulAction.

    When R is commutative, Algebra.ofSubring provides a stronger result than those found in this file, which uses the same scalar action.

    instance Subring.instSMulSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [SMul R α] (S : Subring R) :
    SMul (↥S) α

    The action by a subring is the action by the underlying ring.

    Equations
    theorem Subring.smul_def {R : Type u} [Ring R] {α : Type u_1} [SMul R α] {S : Subring R} (g : S) (m : α) :
    g m = g m
    instance Subring.smulCommClass_left {R : Type u} [Ring R] {α : Type u_1} {β : Type u_2} [SMul R β] [SMul α β] [SMulCommClass R α β] (S : Subring R) :
    SMulCommClass (↥S) α β
    Equations
    • =
    instance Subring.smulCommClass_right {R : Type u} [Ring R] {α : Type u_1} {β : Type u_2} [SMul α β] [SMul R β] [SMulCommClass α R β] (S : Subring R) :
    SMulCommClass α (↥S) β
    Equations
    • =
    instance Subring.instIsScalarTowerSubtypeMem {R : Type u} [Ring R] {α : Type u_1} {β : Type u_2} [SMul α β] [SMul R α] [SMul R β] [IsScalarTower R α β] (S : Subring R) :
    IsScalarTower (↥S) α β

    Note that this provides IsScalarTower S R R which is needed by smul_mul_assoc.

    Equations
    • =
    instance Subring.instFaithfulSMulSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [SMul R α] [FaithfulSMul R α] (S : Subring R) :
    FaithfulSMul (↥S) α
    Equations
    • =
    instance Subring.instMulActionSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [MulAction R α] (S : Subring R) :
    MulAction (↥S) α

    The action by a subring is the action by the underlying ring.

    Equations
    instance Subring.instDistribMulActionSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [AddMonoid α] [DistribMulAction R α] (S : Subring R) :

    The action by a subring is the action by the underlying ring.

    Equations
    instance Subring.instMulDistribMulActionSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [Monoid α] [MulDistribMulAction R α] (S : Subring R) :

    The action by a subring is the action by the underlying ring.

    Equations
    instance Subring.instSMulWithZeroSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [Zero α] [SMulWithZero R α] (S : Subring R) :
    SMulWithZero (↥S) α

    The action by a subring is the action by the underlying ring.

    Equations
    instance Subring.instMulActionWithZeroSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [Zero α] [MulActionWithZero R α] (S : Subring R) :

    The action by a subring is the action by the underlying ring.

    Equations
    • S.instMulActionWithZeroSubtypeMem = S.mulActionWithZero
    instance Subring.instModuleSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [AddCommMonoid α] [Module R α] (S : Subring R) :
    Module (↥S) α

    The action by a subring is the action by the underlying ring.

    Equations
    • S.instModuleSubtypeMem = S.module
    instance Subring.instMulSemiringActionSubtypeMem {R : Type u} [Ring R] {α : Type u_1} [Semiring α] [MulSemiringAction R α] (S : Subring R) :

    The action by a subsemiring is the action by the underlying ring.

    Equations

    The center of a semiring acts commutatively on that semiring.

    Equations
    • =

    The center of a semiring acts commutatively on that semiring.

    Equations
    • =
    theorem Subring.map_comap_eq {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (t : Subring S) :
    Subring.map f (Subring.comap f t) = t f.range
    theorem Subring.map_comap_eq_self {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} {t : Subring S} (h : t f.range) :
    theorem Subring.map_comap_eq_self_of_surjective {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} (hf : Function.Surjective f) (t : Subring S) :
    theorem Subring.comap_map_eq {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Subring R) :
    theorem Subring.comap_map_eq_self {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} {s : Subring R} (h : f ⁻¹' {0} s) :
    theorem Subring.comap_map_eq_self_of_injective {R : Type u} {S : Type v} [Ring R] [Ring S] {f : R →+* S} (hf : Function.Injective f) (s : Subring R) :