Documentation

Marginis.MiyabeNiesStephan2018

Randomness and Solovay degrees #

by

Miyabe, Nies, Stephan #

JLA, 2018. Page 3 says:

We sometimes identify a real α with its binary expansion X ∈ 2^ω and the corresponding set X = {n ∈ ℕ : X (n) = 1 }

Here we prove the well known fact that this representation is not unique.

We also show that consequently, if we use Mathlib's current definition of the pullback measure as of June 23, 2024 as a basis for a measure on Cantor space, the Cantor space gets measure 0.

However, if we use Etienne Marion's KolmogorovExtension4 library things work out well.

theorem tsum_geometric_two_succ :
∑' (n : ), 1 / 2 ^ n.succ = 1
theorem geom_summable :
Summable fun (n : ) => 1 / 2 ^ n.succ
def halfminus (n : ) :
Equations
Instances For
    def halfplus (n : ) :
    Equations
    Instances For
      theorem because_real_of_cantor_not_injective :
      CantorLebesgueMeasure₀ Set.univ = 0
      noncomputable def fairCoin'' :
      Equations
      Instances For
        noncomputable def fairCoin :
        Equations
        Instances For
          Equations
          Instances For
            Equations
            Instances For
              noncomputable def β'measure (p : ENNReal) (hp : p 1) :
              Equations
              Instances For
                theorem fairValue (b : Bool) :
                fairCoin b = 1 / 2
                theorem fairValue'' (b : Bool) :
                fairCoin'' b = 1 / 2
                theorem bernoulliValueTrue'' (p : ENNReal) (hp : p 1) :
                theorem bernoulliValueFalse'' (p : ENNReal) (hp : p 1) :
                (PMF.bernoulli p hp) false = 1 - p
                theorem bernoulliSingletonTrue'' (p : ENNReal) (hp : p 1) :
                ((β'measure p hp) {true}) = p
                theorem bernoulliSingletonFalse'' (p : ENNReal) (hp : p 1) :
                ((β'measure p hp) {false}) = 1 - p
                theorem fairSingleton'' (b : Bool) :
                β' {b} = 1 / 2
                theorem fairSingleton (b : Bool) :
                β {b} = 1 / 2
                noncomputable def μ_bernoulli (p : ENNReal) (hp : p 1) :
                MeasureTheory.Measure ((i : ) → (fun (x : ) => Bool) i)

                The Bernoulli measure with parameter p.

                Equations
                Instances For
                  theorem bernoulliUniv'' (p : ENNReal) (hp : p 1) :
                  (μ_bernoulli p hp) Set.univ = 1
                  noncomputable def μFair :
                  MeasureTheory.Measure ((i : ) → (fun (x : ) => Bool) i)
                  Equations
                  Instances For
                    noncomputable def μFair'' :
                    MeasureTheory.Measure ((i : ) → (fun (x : ) => Bool) i)
                    Equations
                    Instances For
                      theorem fairUniv :
                      μFair Set.univ = 1
                      theorem fairUniv'' :
                      μFair'' Set.univ = 1
                      theorem trueμ_bernoulli (p : ENNReal) (hp : p 1) (k : ) :
                      (μ_bernoulli p hp) {A : (i : ) → (fun (x : ) => Bool) i | A k = true} = p
                      theorem falseμ_bernoulli (p : ENNReal) (hp : p 1) (k : ) :
                      (μ_bernoulli p hp) {A : (i : ) → (fun (x : ) => Bool) i | A k = false} = 1 - p
                      theorem fairHalf (b : Bool) (k : ) :
                      μFair {A : (i : ) → (fun (x : ) => Bool) i | A k = b} = 1 / 2
                      theorem bernoulliBoxes'' {s : } (b : Fin sBool) (p : ENNReal) (hp : p 1) :
                      xFinset.Iio s, (β'measure p hp) (if h : x < s then {b x, h} else {false, true}) = p ^ (Finset.filter (fun (t : Fin s) => b t = true) Finset.univ).card * (1 - p) ^ (Finset.filter (fun (t : Fin s) => b t = false) Finset.univ).card

                      Progress since this one is based on PMF.bernoulli

                      theorem bernoulliBoxes''' {s : } (b : Fin sBool) (p : ENNReal) (hp : p 1) :
                      (μ_bernoulli p hp) {A : Bool | ∀ (k : Fin s), A k = b k} = p ^ (Finset.filter (fun (t : Fin s) => b t = true) Finset.univ).card * (1 - p) ^ (Finset.filter (fun (t : Fin s) => b t = false) Finset.univ).card

                      Bernoulli measure of boxes.

                      theorem noAtomsReal (p : ) (ε : ) (h₀ : 0 < p) (h₁ : p < 1) (h : 0 < ε) :
                      ∃ (n : ), p ^ n ε
                      theorem noAtomsNNReal (ε : NNReal) (p : ) (h₀ : 0 < p) (h₁ : p < 1) (h : 0 < ε) :
                      ∃ (n : ), p ^ n ε
                      theorem noAtomsENNReal {ε : ENNReal} (H : ε ) {p : } (h₀ : 0 < p) (h₁ : p < 1) (h : 0 < ε) :
                      ∃ (n : ), p ^ n ε.toReal
                      theorem extracted_1 (B : Bool) (p : NNReal) (hp : p 1) (ε : ENNReal) (n₀ : ) (hn₀ : p ^ n₀ ε.toReal) (n₁ : ) (z : Bool) (m : ENNReal) (this : m p ^ (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = z) Finset.univ).card * (1 - p) ^ (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = !z) Finset.univ).card) (h : (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = z) Finset.univ).card max n₀ n₁) :
                      m ε
                      theorem binomial_left {p : ENNReal} (hp : p 1) {u : } {a : } (b : ) (h : a u) :
                      p ^ a * (1 - p) ^ b p ^ u
                      theorem binom_distr_left {B : Bool} {p : ENNReal} (hp : p 1) {n₀ : } (u : ) (hu : n₀ u) (z : Bool) (h : (Finset.filter (fun (t : Fin (2 * u)) => B t = z) Finset.univ).card u) :
                      p ^ (Finset.filter (fun (t : Fin (2 * u)) => B t = z) Finset.univ).card * (1 - p) ^ (Finset.filter (fun (t : Fin (2 * u)) => B t = !z) Finset.univ).card p ^ n₀
                      theorem binom_distr_left_est (B : Bool) (p : ENNReal) (hp : p 1) (ε : ENNReal) (n₀ : ) (hn₀ : p ^ n₀ ε) (n₁ : ) (z : Bool) (m : ENNReal) (hm : m p ^ (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = z) Finset.univ).card * (1 - p) ^ (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = !z) Finset.univ).card) (h : (Finset.filter (fun (t : Fin (2 * max n₀ n₁)) => B t = z) Finset.univ).card max n₀ n₁) :
                      m ε
                      theorem majority (B : Bool) (m : ) :
                      (Finset.filter (fun (t : Fin (2 * m)) => B t = true) Finset.univ).card m (Finset.filter (fun (t : Fin (2 * m)) => B t = false) Finset.univ).card m
                      theorem bound_of_toReal {ε : ENNReal} {p : ENNReal} (htop : p ) {n₀ : } (hn : p.toReal ^ n₀ ε.toReal) :
                      p ^ n₀ ε
                      theorem bernoulliNoAtoms {p : ENNReal} (hp : p 1) (hn₀ : 0 < p) (hn₁ : p < 1) (B : Bool) :
                      (μ_bernoulli p hp) {B} = 0

                      The Bernoulli measure with parameter p has no atoms.

                      theorem fairBoxes {s : } (b : Fin sBool) :
                      μFair {A : (i : ) → (fun (x : ) => Bool) i | ∀ (k : Fin s), A k = b k} = (1 / 2) ^ s

                      This mostly characterizes the measure.

                      noncomputable def ν :
                      Equations
                      Instances For