Documentation

Carmojones.Canonical

Canonical models of Carmo and Jones' systems #

Abstract: We show that the two approaches sketched in

are both consistent with

Preferably, we let F(X) = X ∩ A for a fixed set A.

However, to incorporate contrary-to-duty obligations we introduce a predicate B, where A worlds, A ⊆ B, are the best and B \ A worlds the second best.

Thus, if X ∩ A = ∅ but X ∩ B ≠ ∅, we let F(X) = X ∩ B.

We prove the following results about which axioms hold in which model.

Axiom \ Model canon canon_II canon₂ canon₂_II
A
B
C
D thus ✓ × thus ×
E × thus ×
F ×!
G ×!
theorem emp_filter₃ {n : } {A X Y : Finset (Fin n)} (h₀ : Y X) (h₁₀ : X A = ) :
Y A =
theorem restrict_filter₀ {n : } {B X Y Z : Finset (Fin n)} (h₀ : Y X) (h₁ : X B = X Z) :
Y B Y Z
theorem restrict_filter {n : } {B X Y Z : Finset (Fin n)} (h₀ : Y X) (h₁ : X B = X Z) :
Y B = Y Z
theorem inter₃ {n : } {U X Y Z : Finset (Fin n)} (h₀ : U = X Y) (h₁ : U = X Z) :
U = X (Y Z)
theorem emp_filter₀ {n : } {B X Y Z : Finset (Fin n)} (h₀ : Y X) (h₃ : Y B = ) (h₁ : X B = X Z) :
Y Z =
theorem emp_filter₂ {n : } {A X Y Z : Finset (Fin n)} (h₀ : Y X) (h₃ : Y A = ) (h₁ : X A = X Z) :
Y Z =
theorem emp_filter₁ {n : } {A B : Finset (Fin n)} (h : A B) {X Y Z : Finset (Fin n)} (h₀ : Y X) (h₃ : Y B = ) (h₁ : X A = X Z) :
Y Z =
theorem subset_same {n : } {B X Y Z : Finset (Fin n)} (h₀ : Y X = Z X) :
X B Y X B Z
theorem subtle {n : } {B X Y Z : Finset (Fin n)} (h₀ : X B = X Y) (h₁ : Y B = Y Z) :
X Y = X (Y Z)
theorem subtle₁ {n : } {B X Y Z : Finset (Fin n)} (h₀ : X B = X Y) (h₁ : Y B = Y Z) :
X B = X (Y Z)
theorem inter₃₀ {n : } {A B X Y Z : Finset (Fin n)} (h₁₀ : Y A = ) (h₀ : X A = X Y) (h₁ : Y B = Y Z) :
X (Y Z) =
theorem inter₃₁ {n : } {A B X Y Z : Finset (Fin n)} (h : A B) (h₆ : X A = ) (h₀ : X B = X Y) (h₁ : Y A = Y Z) :
X (Y Z) =
theorem no_filter₀ :
Finset.filter (fun (i : Fin 3) => i = 0 i = 1) Finset.univ Finset.filter (fun (i : Fin 3) => i = 0 i = 2) Finset.univ
theorem no_filter₁ :
Finset.filter (fun (i : Fin 3) => i = 0 i = 2) Finset.univ
theorem no_filter₂ :
Finset.filter (fun (i : Fin 3) => i = 2) Finset.univ
theorem no_filter₃ :
Finset.filter (fun (i : Fin 3) => i = 0 i = 1) Finset.univ Finset.filter (fun (i : Fin 3) => i = 1 i = 2) Finset.univ
theorem no_filter₄ :
¬Finset.filter (fun (i : Fin 3) => i = 0 i = 1) Finset.univ Finset.filter (fun (i : Fin 3) => i = 0 i = 2) Finset.univ Finset.filter (fun (i : Fin 3) => i = 1 i = 2) Finset.univ
def canon {n : } (A : Finset (Fin n)) :
Finset (Fin n)Finset (Finset (Fin n))
Equations
Instances For
    def canon_II {n : } (A : Finset (Fin n)) :
    Finset (Fin n)Finset (Finset (Fin n))

    The canon models, which say that what is obligatory is to be in one of the still-possible optimal worlds, satisfy all axioms except E5. This corresponds to approach (I) in my 2017 paper.

    CJ 2022 presumably prefer (II) and 5e. We make a CJ style canon_II by letting ob X = {Y | Y ∩ X = A ∩ X}. My 2017 (II) corresponds to:

    Equations
    Instances For
      theorem canon_II_symmetry {n : } (A : Finset (Fin n)) :
      canon_II A = fun (X : Finset (Fin n)) => if X A = then else Finset.filter (fun (Y : Finset (Fin n)) => X A = X Y) Finset.univ
      theorem canon_II_E5 {n : } (A : Finset (Fin n)) :
      theorem not_canon_E5 :
      ∃ (n : ) (A : Finset (Fin n)), ¬E5 (canon A)
      theorem not_canon_II_D5 :
      ∃ (n : ) (A : Finset (Fin n)), ¬D5 (canon_II A)
      def canon₂ {n : } (A B : Finset (Fin n)) :
      Finset (Fin n)Finset (Finset (Fin n))
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def canon₂_II {n : } (A B : Finset (Fin n)) :
        Finset (Fin n)Finset (Finset (Fin n))
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem canon₂_II_A5 {n : } (A B : Finset (Fin n)) :
          theorem canon₂_II_B5 {n : } (A B : Finset (Fin n)) :
          theorem canon₂_II_C5 {n : } (A B : Finset (Fin n)) :
          theorem canon₂_II_E5 {n : } {A B : Finset (Fin n)} (h : A B) :
          theorem canon₂_II_G5 {n : } {A B : Finset (Fin n)} (h : A B) :
          theorem not_canon₂_II_F5 :
          ∃ (n : ) (A : Finset (Fin n)) (B : Finset (Fin n)), A B ¬F5 (canon₂_II A B)
          theorem canon₂_A5 {n : } (A B : Finset (Fin n)) :
          A5 (canon₂ A B)
          theorem canon₂_B5 {n : } (A B : Finset (Fin n)) :
          B5 (canon₂ A B)
          theorem canon₂_C5 {n : } (A B : Finset (Fin n)) :
          C5 (canon₂ A B)
          theorem canon₂_D5 {n : } {A B : Finset (Fin n)} (h : A B) :
          D5 (canon₂ A B)
          theorem not_canon₂_G :
          ∃ (n : ) (A : Finset (Fin n)) (B : Finset (Fin n)), A B ¬G5 (canon₂ A B)
          theorem canon₂_F5 {n : } (A B : Finset (Fin n)) :
          F5 (canon₂ A B)
          def CJ_all_2022 {n : } (ob : Finset (Fin n)Finset (Finset (Fin n))) :

          All the axioms (including the paradoxical B, D, E):

          Equations
          Instances For
            def CJ_noE_2022 {n : } (ob : Finset (Fin n)Finset (Finset (Fin n))) :
            Equations
            Instances For
              def CJ_noD_2022 {n : } (ob : Finset (Fin n)Finset (Finset (Fin n))) :

              This could also be called CJ_2022.

              Equations
              Instances For
                def CJ_noDF_2022 {n : } (ob : Finset (Fin n)Finset (Finset (Fin n))) :
                Equations
                Instances For
                  def CJ_noEG_2022 {n : } (ob : Finset (Fin n)Finset (Finset (Fin n))) :
                  Equations
                  Instances For
                    theorem CJ_no_DF_canon₂_II {n : } {A B : Finset (Fin n)} (h : A B) :
                    theorem CJ_no_EG_canon₂ {n : } {A B : Finset (Fin n)} (h : A B) :
                    theorem F5_canon_II {n : } {A : Finset (Fin n)} :
                    theorem CJ_noE_canon {n : } {A : Finset (Fin n)} :
                    theorem coincidence {n : } :
                    canon Finset.univ = canon_II Finset.univ
                    theorem CJ_all_canon_univ {n : } :
                    CJ_all_2022 (canon Finset.univ)

                    We prove that for any n, there is an n-world model of A5 through G5, namely: let ob(X) be all the supersets of X, except that ob(∅)=∅.