Documentation

Carmojones.Finset

Canonical models of CJ 2022 axioms #

We demonstrate that Carmo and Jones 2022 axioms 5(a)(b)(c)(g) do not imply their 5(d) or 5(f). We also show that 5(a)(b)(c)(d)(f)(g) together do not imply 5(e). This is done using two-world model counterexamples.

None of the other axioms imply 5a: consider the no-worlds model (which contradicts CJ axiom 1) with ∅ ∈ ob ∅.

We show that the system has arbitrarily large models.

def A5 {U : Type u_1} [Fintype U] (ob : Finset UFinset (Finset U)) :
Equations
Instances For
    def B5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
    Equations
    Instances For
      def C5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
      Equations
      Instances For
        def D5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
        Equations
        Instances For
          def E5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
          Equations
          Instances For
            def F5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
            Equations
            Instances For
              def G5 {U : Type u_1} [Fintype U] [DecidableEq U] (ob : Finset UFinset (Finset U)) :
              Equations
              Instances For
                def ob₂ (b : Fin 5Bool) :
                Finset (Fin 2)Finset (Finset (Fin 2))

                All the ob's satisfying 5(a) and 5(b) in a two-world domain.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem ob₂5a (b : Fin 5Bool) :
                  A5 (ob₂ b)
                  theorem ob₂5b (b : Fin 5Bool) :
                  B5 (ob₂ b)
                  theorem ob₂5c (b : Fin 5Bool) :
                  C5 (ob₂ b)
                  theorem ob₂5d (b : Fin 5Bool) :
                  ((b 0 || b 1) = trueb 2 = true)D5 (ob₂ b)
                  theorem ob₂5e (b : Fin 5Bool) :
                  b 0 = b 1b 1 = b 2(b 3 = trueb 0 = true)(b 4 = trueb 1 = true)E5 (ob₂ b)
                  theorem ob₂5f (b : Fin 5Bool) :
                  ((b 0 || b 1) = trueb 2 = true)F5 (ob₂ b)
                  theorem ob₂5g (b : Fin 5Bool) :
                  G5 (ob₂ b)
                  theorem do_not_imply_5d_or_5f :
                  ∃ (ob : Finset (Fin 2)Finset (Finset (Fin 2))), A5 ob B5 ob C5 ob ¬D5 ob E5 ob ¬F5 ob G5 ob
                  def converter {U : Type} [Fintype U] (ob : Finset UFinset (Finset U)) :
                  Set USet (Set U)
                  Equations
                  Instances For
                    theorem empty_finset {U : Type} [Fintype U] {X : Set U} (h : X.toFinset = ) :
                    X =
                    theorem fin_emp {U : Type} [Fintype U] :
                    = .toFinset
                    theorem get_5a {U : Type} [Fintype U] {ob₀ : Finset UFinset (Finset U)} (hob₀ : A5 ob₀) :
                    CJ5a fun (S : Set U) => {T : Set U | T.toFinset ob₀ S.toFinset}
                    theorem get_5b {U : Type} [Fintype U] [DecidableEq U] {ob₀ : Finset UFinset (Finset U)} (hob₀ : B5 ob₀) :
                    CJ5b fun (S : Set U) => {T : Set U | T.toFinset ob₀ S.toFinset}
                    theorem inter_toFinset₂ {U : Type} [Fintype U] [DecidableEq U] {X Y : Set U} {hβ : X Y } :
                    X.toFinset Y.toFinset

                    Used in aux_toFinset.

                    theorem inter_toFinset₃ {U : Type} [Fintype U] [DecidableEq U] {X Y Z : Set U} (hβ : X Y Z ) :
                    X.toFinset Y.toFinset Z.toFinset
                    theorem get_5c {U : Type} [Fintype U] [DecidableEq U] {ob₀ : Finset UFinset (Finset U)} (hob₀ : C5 ob₀) :
                    CJ5c_star_finite fun (S : Set U) => {T : Set U | T.toFinset ob₀ S.toFinset}
                    theorem get_not_5d {U : Type} [Fintype U] [DecidableEq U] {ob₀ : Finset UFinset (Finset U)} (hob₀ : ¬D5 ob₀) :
                    ¬CJ5d fun (S : Set U) => {T : Set U | T.toFinset ob₀ S.toFinset}
                    theorem Set_result_from_computation :
                    ∃ (U : Type) (ob : Set USet (Set U)), CJ5a ob CJ5b ob CJ5c_star_finite ob ¬CJ5d ob
                    theorem do_not_imply_5e :
                    ∃ (ob : Finset (Fin 2)Finset (Finset (Fin 2))), A5 ob B5 ob C5 ob D5 ob ¬E5 ob F5 ob G5 ob