Documentation
Carmojones
.
Basic
Search
Google site search
return to top
source
Imports
Init
Mathlib.Order.SetNotation
Mathlib.Data.Set.Basic
Imported by
CJ5a
CJ5b
CJ5c_star
CJ5c_star_finite
CJ5d
CJ5e
CJ5bd
CJ5f
bd5
first_equality
subset_of_Union
exists_at_beta
defX
not_empty
inter_not_empty
II_2_2
Carmo and Jones' system(s) of deontic logic for contrary-to-duty obligations
#
Carmo and Jones 2002
Carmo and Jones 2013
Kjos-Hanssen 2017
Carmo and Jones 2022
source
def
CJ5a
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5a
ob
=
∀ (
X
:
Set
U
),
∅
∉
ob
X
Instances For
source
def
CJ5b
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5b
ob
=
∀ (
X
Y
Z
:
Set
U
),
Z
∩
X
=
Y
∩
X
→
(
Z
∈
ob
X
↔
Y
∈
ob
X
)
Instances For
source
def
CJ5c_star
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5c_star
ob
=
∀ (
X
:
Set
U
),
∀
β
⊆
ob
X
,
β
≠
∅
→
⋂₀
β
∩
X
≠
∅
→
⋂₀
β
∈
ob
X
Instances For
source
def
CJ5c_star_finite
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5c_star_finite
ob
=
∀ (
X
Y
Z
:
Set
U
),
Y
∈
ob
X
→
Z
∈
ob
X
→
X
∩
Y
∩
Z
≠
∅
→
Y
∩
Z
∈
ob
X
Instances For
source
def
CJ5d
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5d
ob
=
∀ (
X
Y
Z
:
Set
U
),
Y
⊆
X
→
Y
∈
ob
X
→
X
⊆
Z
→
Z
\
X
∪
Y
∈
ob
Z
Instances For
source
def
CJ5e
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5e
ob
=
∀ (
X
Y
Z
:
Set
U
),
Y
⊆
X
→
Z
∈
ob
X
→
Y
∩
Z
≠
∅
→
Z
∈
ob
Y
Instances For
source
def
CJ5bd
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5bd
ob
=
∀ (
X
Y
Z
:
Set
U
),
Y
∈
ob
X
∧
X
⊆
Z
→
Z
\
X
∪
Y
∈
ob
Z
Instances For
source
def
CJ5f
{U :
Type
u_1}
(ob :
Set
U
→
Set
(
Set
U
)
)
:
Prop
Equations
CJ5f
ob
=
∀ (
β
:
Set
(
Set
U
)
),
β
≠
∅
→
∀ (
X
:
Set
U
),
(∀
Z
∈
β
,
X
∈
ob
Z
)
→
X
∈
ob
(
⋃₀
β
)
Instances For
source
theorem
bd5
{α✝ :
Type
u_1}
{ob :
Set
α✝
→
Set
(
Set
α✝
)
}
(b5 :
CJ5b
ob
)
(d5 :
CJ5d
ob
)
:
CJ5bd
ob
source
theorem
first_equality
{U :
Type
u_1}
{β :
Set
(
Set
U
)
}
{X :
Set
U
}
:
⋂₀
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
∪
X
=
x
}
=
⋂₀
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
=
x
}
∪
X
source
theorem
subset_of_Union
{U :
Type
}
{ob :
Set
U
→
Set
(
Set
U
)
}
(b5 :
CJ5b
ob
)
(d5 :
CJ5d
ob
)
{β :
Set
(
Set
U
)
}
{X :
Set
U
}
{h3 :
∀
Z
∈
β
,
X
∈
ob
Z
}
:
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
∪
X
=
x
}
⊆
ob
(
⋃₀
β
)
source
theorem
exists_at_beta
{U :
Type
u_1}
{β :
Set
(
Set
U
)
}
{h2 :
β
≠
∅
}
:
∃ (
B
:
Set
U
),
B
∈
β
source
theorem
defX
{U :
Type
u_1}
{β :
Set
(
Set
U
)
}
{X :
Set
U
}
{h2 :
β
≠
∅
}
:
X
=
⋂₀
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
∪
X
=
x
}
source
theorem
not_empty
{U :
Type
u_1}
{ob :
Set
U
→
Set
(
Set
U
)
}
{β :
Set
(
Set
U
)
}
{X :
Set
U
}
{h2 :
β
≠
∅
}
{h3 :
∀
Z
∈
β
,
X
∈
ob
Z
}
(a5 :
CJ5a
ob
)
:
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
∪
X
=
x
}
≠
∅
source
theorem
inter_not_empty
{U :
Type
u_1}
{ob :
Set
U
→
Set
(
Set
U
)
}
{β :
Set
(
Set
U
)
}
{X :
Set
U
}
{h2 :
β
≠
∅
}
{h3 :
∀
Z
∈
β
,
X
∈
ob
Z
}
(a5 :
CJ5a
ob
)
(b5 :
CJ5b
ob
)
:
⋂₀
{
x
:
Set
U
|
∃
Z
∈
β
,
⋃₀
β
\
Z
∪
X
=
x
}
∩
⋃₀
β
≠
∅
source
theorem
II_2_2
{U :
Type
}
{ob :
Set
U
→
Set
(
Set
U
)
}
(a5 :
CJ5a
ob
)
(b5 :
CJ5b
ob
)
(cstar5 :
CJ5c_star
ob
)
(d5 :
CJ5d
ob
)
:
CJ5f
ob