Documentation

Carmojones.Basic

Carmo and Jones' system(s) of deontic logic for contrary-to-duty obligations #

def CJ5a {U : Type u_1} (ob : Set USet (Set U)) :
Equations
Instances For
    def CJ5b {U : Type u_1} (ob : Set USet (Set U)) :
    Equations
    Instances For
      def CJ5c_star {U : Type u_1} (ob : Set USet (Set U)) :
      Equations
      Instances For
        def CJ5c_star_finite {U : Type u_1} (ob : Set USet (Set U)) :
        Equations
        Instances For
          def CJ5d {U : Type u_1} (ob : Set USet (Set U)) :
          Equations
          Instances For
            def CJ5e {U : Type u_1} (ob : Set USet (Set U)) :
            Equations
            Instances For
              def CJ5bd {U : Type u_1} (ob : Set USet (Set U)) :
              Equations
              Instances For
                def CJ5f {U : Type u_1} (ob : Set USet (Set U)) :
                Equations
                Instances For
                  theorem bd5 {α✝ : Type u_1} {ob : Set α✝Set (Set α✝)} (b5 : CJ5b ob) (d5 : CJ5d ob) :
                  theorem first_equality {U : Type u_1} {β : Set (Set U)} {X : Set U} :
                  ⋂₀ {x : Set U | Zβ, ⋃₀ β \ Z X = x} = ⋂₀ {x : Set U | Zβ, ⋃₀ β \ Z = x} X
                  theorem subset_of_Union {U : Type} {ob : Set USet (Set U)} (b5 : CJ5b ob) (d5 : CJ5d ob) {β : Set (Set U)} {X : Set U} {h3 : Zβ, X ob Z} :
                  {x : Set U | Zβ, ⋃₀ β \ Z X = x} ob (⋃₀ β)
                  theorem exists_at_beta {U : Type u_1} {β : Set (Set U)} {h2 : β } :
                  ∃ (B : Set U), B β
                  theorem defX {U : Type u_1} {β : Set (Set U)} {X : Set U} {h2 : β } :
                  X = ⋂₀ {x : Set U | Zβ, ⋃₀ β \ Z X = x}
                  theorem not_empty {U : Type u_1} {ob : Set USet (Set U)} {β : Set (Set U)} {X : Set U} {h2 : β } {h3 : Zβ, X ob Z} (a5 : CJ5a ob) :
                  {x : Set U | Zβ, ⋃₀ β \ Z X = x}
                  theorem inter_not_empty {U : Type u_1} {ob : Set USet (Set U)} {β : Set (Set U)} {X : Set U} {h2 : β } {h3 : Zβ, X ob Z} (a5 : CJ5a ob) (b5 : CJ5b ob) :
                  ⋂₀ {x : Set U | Zβ, ⋃₀ β \ Z X = x} ⋃₀ β
                  theorem II_2_2 {U : Type} {ob : Set USet (Set U)} (a5 : CJ5a ob) (b5 : CJ5b ob) (cstar5 : CJ5c_star ob) (d5 : CJ5d ob) :
                  CJ5f ob