Documentation

Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs

The General Linear group GL(n,R) #

This file defines the elements of the General Linear group Matrix.GeneralLinearGroup n R, consisting of all invertible n by n R-matrices.

Main definitions #

Tags #

matrix group, group, matrix inverse

@[reducible, inline]
abbrev Matrix.GeneralLinearGroup (n : Type u) (R : Type v) [DecidableEq n] [Fintype n] [CommRing R] :
Type (max v u)

GL n R is the group of n by n R-matrices with unit determinant. Defined as a subtype of matrices

Equations
Instances For

GL n R is the group of n by n R-matrices with unit determinant. Defined as a subtype of matrices

Equations
instance Matrix.GeneralLinearGroup.instCoeFun {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] :
CoeFun (GL n R) fun (x : GL n R) => nnR

This instance is here for convenience, but is not the simp-normal form.

Equations
  • Matrix.GeneralLinearGroup.instCoeFun = { coe := fun (A : GL n R) => A }

The determinant of a unit matrix is itself a unit.

Equations
  • Matrix.GeneralLinearGroup.det = { toFun := fun (A : GL n R) => { val := (↑A).det, inv := (↑A⁻¹).det, val_inv := , inv_val := }, map_one' := , map_mul' := }
@[simp]
theorem Matrix.GeneralLinearGroup.val_inv_det_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(Matrix.GeneralLinearGroup.det A)⁻¹ = (↑A⁻¹).det
@[simp]
theorem Matrix.GeneralLinearGroup.val_det_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(Matrix.GeneralLinearGroup.det A) = (↑A).det

The GL n R and Matrix.GeneralLinearGroup R n groups are multiplicatively equivalent

Equations
  • Matrix.GeneralLinearGroup.toLin = Units.mapEquiv Matrix.toLinAlgEquiv'.toMulEquiv
def Matrix.GeneralLinearGroup.mk' {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix n n R) :
Invertible A.detGL n R

Given a matrix with invertible determinant we get an element of GL n R

Equations
noncomputable def Matrix.GeneralLinearGroup.mk'' {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix n n R) (h : IsUnit A.det) :
GL n R

Given a matrix with unit determinant we get an element of GL n R

Equations
def Matrix.GeneralLinearGroup.mkOfDetNeZero {n : Type u} [DecidableEq n] [Fintype n] {K : Type u_1} [Field K] (A : Matrix n n K) (h : A.det 0) :
GL n K

Given a matrix with non-zero determinant over a field, we get an element of GL n K

Equations
theorem Matrix.GeneralLinearGroup.ext_iff {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) (B : GL n R) :
A = B ∀ (i j : n), A i j = B i j
theorem Matrix.GeneralLinearGroup.ext {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] ⦃A : GL n R ⦃B : GL n R (h : ∀ (i j : n), A i j = B i j) :
A = B

Not marked @[ext] as the ext tactic already solves this.

@[simp]
theorem Matrix.GeneralLinearGroup.coe_mul {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) (B : GL n R) :
(A * B) = A * B
@[simp]
theorem Matrix.GeneralLinearGroup.coe_one {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] :
1 = 1
theorem Matrix.GeneralLinearGroup.coe_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
A⁻¹ = (↑A)⁻¹

An element of the matrix general linear group on (n) [Fintype n] can be considered as an element of the endomorphism general linear group on n → R.

Equations
  • Matrix.GeneralLinearGroup.toLinear = Units.mapEquiv Matrix.toLinAlgEquiv'.toRingEquiv.toMulEquiv
@[simp]
theorem Matrix.GeneralLinearGroup.coe_toLinear {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(Matrix.GeneralLinearGroup.toLinear A) = (↑A).mulVecLin
@[simp]
theorem Matrix.GeneralLinearGroup.toLinear_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) (v : nR) :
(Matrix.GeneralLinearGroup.toLinear A).toLinearEquiv v = (↑A).mulVecLin v
def Matrix.GeneralLinearGroup.map {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) :
GL n R →* GL n S

A ring homomorphism f : R →+* S induces a homomorphism GLₙ(f) : GLₙ(R) →* GLₙ(S).

Equations
@[simp]
theorem Matrix.GeneralLinearGroup.map_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (i : n) (j : n) (g : GL n R) :
((Matrix.GeneralLinearGroup.map f) g) i j = f (g i j)
@[simp]
@[simp]
theorem Matrix.GeneralLinearGroup.map_one {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) :
theorem Matrix.GeneralLinearGroup.map_det {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
Matrix.GeneralLinearGroup.det ((Matrix.GeneralLinearGroup.map f) g) = (Units.map f) (Matrix.GeneralLinearGroup.det g)
@[simp]
theorem Matrix.GeneralLinearGroup.coe_map_mul_map_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(↑g).map f * (↑g)⁻¹.map f = 1
@[simp]
theorem Matrix.GeneralLinearGroup.coe_map_inv_mul_map {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(↑g)⁻¹.map f * (↑g).map f = 1

The map from SL(n) to GL(n) underlying the coercion, forgetting the value of the determinant.

Equations
  • A = { val := A, inv := A⁻¹, val_inv := , inv_val := }
Equations
  • Matrix.SpecialLinearGroup.hasCoeToGeneralLinearGroup = { coe := Matrix.SpecialLinearGroup.coeToGL }
@[simp]
theorem Matrix.SpecialLinearGroup.coeToGL_det {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (g : Matrix.SpecialLinearGroup n R) :
Matrix.GeneralLinearGroup.det g = 1
def Matrix.GLPos (n : Type u) (R : Type v) [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] :
Subgroup (GL n R)

This is the subgroup of nxn matrices with entries over a linear ordered ring and positive determinant.

Equations

This is the subgroup of nxn matrices with entries over a linear ordered ring and positive determinant.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Matrix.mem_glpos {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] (A : GL n R) :
A Matrix.GLPos n R 0 < (Matrix.GeneralLinearGroup.det A)
theorem Matrix.GLPos.det_ne_zero {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] (A : (Matrix.GLPos n R)) :
(↑A).det 0

Formal operation of negation on general linear group on even cardinality n given by negating each element.

Equations
  • Matrix.instNegSubtypeGeneralLinearGroupMemSubgroupGLPos = { neg := fun (g : (Matrix.GLPos n R)) => -g, }
@[simp]
theorem Matrix.GLPos.coe_neg_GL {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] [Fact (Even (Fintype.card n))] (g : (Matrix.GLPos n R)) :
(-g) = -g
@[simp]
theorem Matrix.GLPos.coe_neg {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] [Fact (Even (Fintype.card n))] (g : (Matrix.GLPos n R)) :
(-g) = -g
@[simp]
theorem Matrix.GLPos.coe_neg_apply {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [LinearOrderedCommRing R] [Fact (Even (Fintype.card n))] (g : (Matrix.GLPos n R)) (i : n) (j : n) :
(-g) i j = -g i j
Equations

Matrix.SpecialLinearGroup n R embeds into GL_pos n R

Equations
  • Matrix.SpecialLinearGroup.toGLPos = { toFun := fun (A : Matrix.SpecialLinearGroup n R) => A, , map_one' := , map_mul' := }
Equations
  • Matrix.SpecialLinearGroup.instCoeSubtypeGeneralLinearGroupMemSubgroupGLPos = { coe := Matrix.SpecialLinearGroup.toGLPos }
theorem Matrix.SpecialLinearGroup.toGLPos_injective {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [LinearOrderedCommRing R] :
Function.Injective Matrix.SpecialLinearGroup.toGLPos
@[simp]
theorem Matrix.SpecialLinearGroup.coe_GLPos_coe_GL_coe_matrix {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [LinearOrderedCommRing R] (g : Matrix.SpecialLinearGroup n R) :
(Matrix.SpecialLinearGroup.toGLPos g) = g

Coercing a Matrix.SpecialLinearGroup via GL_pos and GL is the same as coercing straight to a matrix.

@[simp]
theorem Matrix.SpecialLinearGroup.coe_to_GLPos_to_GL_det {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [LinearOrderedCommRing R] (g : Matrix.SpecialLinearGroup n R) :
Matrix.GeneralLinearGroup.det (Matrix.SpecialLinearGroup.toGLPos g) = 1
theorem Matrix.SpecialLinearGroup.coe_GLPos_neg {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [LinearOrderedCommRing R] [Fact (Even (Fintype.card n))] (g : Matrix.SpecialLinearGroup n R) :
Matrix.SpecialLinearGroup.toGLPos (-g) = -Matrix.SpecialLinearGroup.toGLPos g