Documentation

Mathlib.Algebra.Group.Units.Equiv

Multiplicative and additive equivalence acting on units. #

def toUnits {G : Type u_5} [Group G] :
G ≃* Gˣ

A group is isomorphic to its group of units.

Equations
  • toUnits = { toFun := fun (x : G) => { val := x, inv := x⁻¹, val_inv := , inv_val := }, invFun := fun (x : Gˣ) => x, left_inv := , right_inv := , map_mul' := }
def toAddUnits {G : Type u_5} [AddGroup G] :

An additive group is isomorphic to its group of additive units

Equations
  • toAddUnits = { toFun := fun (x : G) => { val := x, neg := -x, val_neg := , neg_val := }, invFun := fun (x : AddUnits G) => x, left_inv := , right_inv := , map_add' := }
@[simp]
theorem val_toUnits_apply {G : Type u_5} [Group G] (x : G) :
(toUnits x) = x
@[simp]
theorem toAddUnits_symm_apply {G : Type u_5} [AddGroup G] (x : AddUnits G) :
toAddUnits.symm x = x
@[simp]
theorem toUnits_symm_apply {G : Type u_5} [Group G] (x : Gˣ) :
toUnits.symm x = x
@[simp]
theorem val_toAddUnits_apply {G : Type u_5} [AddGroup G] (x : G) :
(toAddUnits x) = x
@[simp]
theorem toUnits_val_apply {G : Type u_6} [Group G] (x : Gˣ) :
toUnits x = x
@[simp]
theorem toAddUnits_val_apply {G : Type u_6} [AddGroup G] (x : AddUnits G) :
toAddUnits x = x
def Units.mapEquiv {M : Type u_3} {N : Type u_4} [Monoid M] [Monoid N] (h : M ≃* N) :

A multiplicative equivalence of monoids defines a multiplicative equivalence of their groups of units.

Equations
  • Units.mapEquiv h = { toFun := (↑(Units.map h.toMonoidHom)).toFun, invFun := (Units.map h.symm.toMonoidHom), left_inv := , right_inv := , map_mul' := }
@[simp]
theorem Units.mapEquiv_symm {M : Type u_3} {N : Type u_4} [Monoid M] [Monoid N] (h : M ≃* N) :
@[simp]
theorem Units.coe_mapEquiv {M : Type u_3} {N : Type u_4} [Monoid M] [Monoid N] (h : M ≃* N) (x : Mˣ) :
((Units.mapEquiv h) x) = h x
def Units.mulLeft {M : Type u_3} [Monoid M] (u : Mˣ) :

Left multiplication by a unit of a monoid is a permutation of the underlying type.

Equations
  • u.mulLeft = { toFun := fun (x : M) => u * x, invFun := fun (x : M) => u⁻¹ * x, left_inv := , right_inv := }
def AddUnits.addLeft {M : Type u_3} [AddMonoid M] (u : AddUnits M) :

Left addition of an additive unit is a permutation of the underlying type.

Equations
  • u.addLeft = { toFun := fun (x : M) => u + x, invFun := fun (x : M) => (-u) + x, left_inv := , right_inv := }
@[simp]
theorem AddUnits.addLeft_apply {M : Type u_3} [AddMonoid M] (u : AddUnits M) :
u.addLeft = fun (x : M) => u + x
@[simp]
theorem Units.mulLeft_apply {M : Type u_3} [Monoid M] (u : Mˣ) :
u.mulLeft = fun (x : M) => u * x
@[simp]
theorem Units.mulLeft_symm {M : Type u_3} [Monoid M] (u : Mˣ) :
Equiv.symm u.mulLeft = u⁻¹.mulLeft
@[simp]
theorem AddUnits.addLeft_symm {M : Type u_3} [AddMonoid M] (u : AddUnits M) :
Equiv.symm u.addLeft = (-u).addLeft
theorem Units.mulLeft_bijective {M : Type u_3} [Monoid M] (a : Mˣ) :
Function.Bijective fun (x : M) => a * x
theorem AddUnits.addLeft_bijective {M : Type u_3} [AddMonoid M] (a : AddUnits M) :
Function.Bijective fun (x : M) => a + x
def Units.mulRight {M : Type u_3} [Monoid M] (u : Mˣ) :

Right multiplication by a unit of a monoid is a permutation of the underlying type.

Equations
  • u.mulRight = { toFun := fun (x : M) => x * u, invFun := fun (x : M) => x * u⁻¹, left_inv := , right_inv := }
def AddUnits.addRight {M : Type u_3} [AddMonoid M] (u : AddUnits M) :

Right addition of an additive unit is a permutation of the underlying type.

Equations
  • u.addRight = { toFun := fun (x : M) => x + u, invFun := fun (x : M) => x + (-u), left_inv := , right_inv := }
@[simp]
theorem Units.mulRight_apply {M : Type u_3} [Monoid M] (u : Mˣ) :
u.mulRight = fun (x : M) => x * u
@[simp]
theorem AddUnits.addRight_apply {M : Type u_3} [AddMonoid M] (u : AddUnits M) :
u.addRight = fun (x : M) => x + u
@[simp]
theorem Units.mulRight_symm {M : Type u_3} [Monoid M] (u : Mˣ) :
Equiv.symm u.mulRight = u⁻¹.mulRight
@[simp]
theorem AddUnits.addRight_symm {M : Type u_3} [AddMonoid M] (u : AddUnits M) :
Equiv.symm u.addRight = (-u).addRight
theorem Units.mulRight_bijective {M : Type u_3} [Monoid M] (a : Mˣ) :
Function.Bijective fun (x : M) => x * a
theorem AddUnits.addRight_bijective {M : Type u_3} [AddMonoid M] (a : AddUnits M) :
Function.Bijective fun (x : M) => x + a
def Equiv.mulLeft {G : Type u_5} [Group G] (a : G) :

Left multiplication in a Group is a permutation of the underlying type.

Equations
def Equiv.addLeft {G : Type u_5} [AddGroup G] (a : G) :

Left addition in an AddGroup is a permutation of the underlying type.

Equations
@[simp]
theorem Equiv.coe_mulLeft {G : Type u_5} [Group G] (a : G) :
(Equiv.mulLeft a) = fun (x : G) => a * x
@[simp]
theorem Equiv.coe_addLeft {G : Type u_5} [AddGroup G] (a : G) :
(Equiv.addLeft a) = fun (x : G) => a + x
@[simp]
theorem Equiv.mulLeft_symm_apply {G : Type u_5} [Group G] (a : G) :
(Equiv.symm (Equiv.mulLeft a)) = fun (x : G) => a⁻¹ * x

Extra simp lemma that dsimp can use. simp will never use this.

theorem Equiv.addLeft_symm_apply {G : Type u_5} [AddGroup G] (a : G) :
(Equiv.symm (Equiv.addLeft a)) = fun (x : G) => -a + x

Extra simp lemma that dsimp can use. simp will never use this.

@[simp]
@[simp]
theorem Group.mulLeft_bijective {G : Type u_5} [Group G] (a : G) :
Function.Bijective fun (x : G) => a * x
theorem AddGroup.addLeft_bijective {G : Type u_5} [AddGroup G] (a : G) :
Function.Bijective fun (x : G) => a + x
def Equiv.mulRight {G : Type u_5} [Group G] (a : G) :

Right multiplication in a Group is a permutation of the underlying type.

Equations
def Equiv.addRight {G : Type u_5} [AddGroup G] (a : G) :

Right addition in an AddGroup is a permutation of the underlying type.

Equations
@[simp]
theorem Equiv.coe_mulRight {G : Type u_5} [Group G] (a : G) :
(Equiv.mulRight a) = fun (x : G) => x * a
@[simp]
theorem Equiv.coe_addRight {G : Type u_5} [AddGroup G] (a : G) :
(Equiv.addRight a) = fun (x : G) => x + a
@[simp]
@[simp]
theorem Equiv.mulRight_symm_apply {G : Type u_5} [Group G] (a : G) :
(Equiv.symm (Equiv.mulRight a)) = fun (x : G) => x * a⁻¹

Extra simp lemma that dsimp can use. simp will never use this.

theorem Equiv.addRight_symm_apply {G : Type u_5} [AddGroup G] (a : G) :
(Equiv.symm (Equiv.addRight a)) = fun (x : G) => x + -a

Extra simp lemma that dsimp can use. simp will never use this.

theorem Group.mulRight_bijective {G : Type u_5} [Group G] (a : G) :
Function.Bijective fun (x : G) => x * a
theorem AddGroup.addRight_bijective {G : Type u_5} [AddGroup G] (a : G) :
Function.Bijective fun (x : G) => x + a
def Equiv.divLeft {G : Type u_5} [Group G] (a : G) :
G G

A version of Equiv.mulLeft a b⁻¹ that is defeq to a / b.

Equations
  • Equiv.divLeft a = { toFun := fun (b : G) => a / b, invFun := fun (b : G) => b⁻¹ * a, left_inv := , right_inv := }
def Equiv.subLeft {G : Type u_5} [AddGroup G] (a : G) :
G G

A version of Equiv.addLeft a (-b) that is defeq to a - b.

Equations
  • Equiv.subLeft a = { toFun := fun (b : G) => a - b, invFun := fun (b : G) => -b + a, left_inv := , right_inv := }
@[simp]
theorem Equiv.divLeft_apply {G : Type u_5} [Group G] (a : G) (b : G) :
(Equiv.divLeft a) b = a / b
@[simp]
theorem Equiv.subLeft_symm_apply {G : Type u_5} [AddGroup G] (a : G) (b : G) :
(Equiv.subLeft a).symm b = -b + a
@[simp]
theorem Equiv.subLeft_apply {G : Type u_5} [AddGroup G] (a : G) (b : G) :
(Equiv.subLeft a) b = a - b
@[simp]
theorem Equiv.divLeft_symm_apply {G : Type u_5} [Group G] (a : G) (b : G) :
(Equiv.divLeft a).symm b = b⁻¹ * a
def Equiv.divRight {G : Type u_5} [Group G] (a : G) :
G G

A version of Equiv.mulRight a⁻¹ b that is defeq to b / a.

Equations
  • Equiv.divRight a = { toFun := fun (b : G) => b / a, invFun := fun (b : G) => b * a, left_inv := , right_inv := }
def Equiv.subRight {G : Type u_5} [AddGroup G] (a : G) :
G G

A version of Equiv.addRight (-a) b that is defeq to b - a.

Equations
  • Equiv.subRight a = { toFun := fun (b : G) => b - a, invFun := fun (b : G) => b + a, left_inv := , right_inv := }
@[simp]
theorem Equiv.divRight_symm_apply {G : Type u_5} [Group G] (a : G) (b : G) :
(Equiv.divRight a).symm b = b * a
@[simp]
theorem Equiv.divRight_apply {G : Type u_5} [Group G] (a : G) (b : G) :
(Equiv.divRight a) b = b / a
@[simp]
theorem Equiv.subRight_apply {G : Type u_5} [AddGroup G] (a : G) (b : G) :
(Equiv.subRight a) b = b - a
@[simp]
theorem Equiv.subRight_symm_apply {G : Type u_5} [AddGroup G] (a : G) (b : G) :
(Equiv.subRight a).symm b = b + a
def unitsEquivProdSubtype (α : Type u_2) [Monoid α] :
αˣ { p : α × α // p.1 * p.2 = 1 p.2 * p.1 = 1 }

The αˣ type is equivalent to a subtype of α × α.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem val_unitsEquivProdSubtype_symm_apply (α : Type u_2) [Monoid α] (p : { p : α × α // p.1 * p.2 = 1 p.2 * p.1 = 1 }) :
((unitsEquivProdSubtype α).symm p) = (↑p).1
@[simp]
theorem unitsEquivProdSubtype_apply_coe (α : Type u_2) [Monoid α] (u : αˣ) :
((unitsEquivProdSubtype α) u) = (u, u⁻¹)
@[simp]
theorem val_inv_unitsEquivProdSubtype_symm_apply (α : Type u_2) [Monoid α] (p : { p : α × α // p.1 * p.2 = 1 p.2 * p.1 = 1 }) :
((unitsEquivProdSubtype α).symm p)⁻¹ = (↑p).2
def MulEquiv.inv (G : Type u_6) [DivisionCommMonoid G] :
G ≃* G

In a DivisionCommMonoid, Equiv.inv is a MulEquiv. There is a variant of this MulEquiv.inv' G : G ≃* Gᵐᵒᵖ for the non-commutative case.

Equations
  • MulEquiv.inv G = { toFun := Inv.inv, invFun := Inv.inv, left_inv := , right_inv := , map_mul' := }

When the AddGroup is commutative, Equiv.neg is an AddEquiv.

Equations
  • AddEquiv.neg G = { toFun := Neg.neg, invFun := Neg.neg, left_inv := , right_inv := , map_add' := }
@[simp]
theorem AddEquiv.neg_apply (G : Type u_6) [SubtractionCommMonoid G] :
∀ (a : G), (AddEquiv.neg G) a = -a
@[simp]
theorem MulEquiv.inv_apply (G : Type u_6) [DivisionCommMonoid G] :
∀ (a : G), (MulEquiv.inv G) a = a⁻¹
@[simp]
theorem isLocalHom_equiv {F : Type u_1} {M : Type u_3} {N : Type u_4} [Monoid M] [Monoid N] [EquivLike F M N] [MulEquivClass F M N] (f : F) :
@[deprecated isLocalHom_equiv]
theorem isLocalRingHom_equiv {F : Type u_1} {M : Type u_3} {N : Type u_4} [Monoid M] [Monoid N] [EquivLike F M N] [MulEquivClass F M N] (f : F) :

Alias of isLocalHom_equiv.