Units (i.e., invertible elements) of a monoid #
An element of a Monoid
is a unit if it has a two-sided inverse.
Main declarations #
Units M
: the group of units (i.e., invertible elements) of a monoid.IsUnit x
: a predicate asserting thatx
is a unit (i.e., invertible element) of a monoid.
For both declarations, there is an additive counterpart: AddUnits
and IsAddUnit
.
See also Prime
, Associated
, and Irreducible
in Mathlib.Algebra.Associated
.
Notation #
We provide Mˣ
as notation for Units M
,
resembling the notation
TODO #
The results here should be used to golf the basic Group
lemmas.
Units of a Monoid
, bundled version. Notation: αˣ
.
An element of a Monoid
is a unit if it has a two-sided inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see IsUnit
.
- val : α
The underlying value in the base
Monoid
. - inv : α
Instances For
- AlgEquiv.instMulDistribMulActionUnits
- Algebra.instMulDistribMulActionAlgHomUnits
- Associates.uniqueUnits
- CanonicallyOrderedCommMonoid.toUniqueUnits
- FreeMonoid.uniqueUnits
- Ideal.uniqueUnits
- Int.instUnitsPow
- LinearMap.CompatibleSMul.units
- Nat.unique_units
- TensorProduct.CompatibleSMul.unit
- Units.continuousConstSMul
- Units.continuousSMul
- Units.instCoeHead
- Units.instCommGroupUnits
- Units.instContinuousMul
- Units.instDiscreteTopology
- Units.instDistribMulAction
- Units.instDistribSMulUnits
- Units.instDiv
- Units.instDivInvMonoid
- Units.instFaithfulSMul
- Units.instGroup
- Units.instHasDistribNeg
- Units.instInhabited
- Units.instInv
- Units.instIsScalarTower
- Units.instLinearOrder
- Units.instLinearOrderedCommGroup
- Units.instMeasurableSpace
- Units.instMonoid
- Units.instMul
- Units.instMulAction
- Units.instMulArchimedean
- Units.instMulDistribMulAction
- Units.instMulOneClass
- Units.instNeg
- Units.instOne
- Units.instPartialOrderUnits
- Units.instPreorder
- Units.instRepr
- Units.instSMul
- Units.instSMulZeroClass
- Units.instSMul_1
- Units.instStarModule
- Units.instStarMul
- Units.instT2Space
- Units.instTopologicalGroupOfContinuousMul
- Units.instTopologicalSpaceUnits
- Units.isScalarTower'
- Units.isScalarTower'_left
- Units.isometricSMul
- Units.measurableSMul
- Units.mulAction'
- Units.mulDistribMulAction'
- Units.orderedCommGroup
- Units.smulCommClass'
- Units.smulCommClass_left
- Units.smulCommClass_right
- UnitsInt.fintype
- ZMod.subsingleton_units
- instCanLiftUnitsValIsUnit
- instContinuousStarUnits
- instFiniteUnits
- instFiniteZModUnits
- instFintypeUnitsOfDecidableEq
- instIsCyclicUnitsOfFinite
- instUniqueUnitsOfSubsingleton
Units of a Monoid
, bundled version. Notation: αˣ
.
An element of a Monoid
is a unit if it has a two-sided inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see IsUnit
.
Equations
- «term_ˣ» = Lean.ParserDescr.trailingNode `«term_ˣ» 1024 1024 (Lean.ParserDescr.symbol "ˣ")
Units of an AddMonoid
, bundled version.
An element of an AddMonoid
is a unit if it has a two-sided additive inverse.
This version bundles the inverse element so that it can be computed.
For a predicate see isAddUnit
.
- val : α
The underlying value in the base
AddMonoid
. - neg : α
Instances For
- AddUnits.addAction'
- AddUnits.continuousConstVAdd
- AddUnits.continuousVAdd
- AddUnits.instAdd
- AddUnits.instAddAction
- AddUnits.instAddArchimedean
- AddUnits.instAddCommGroupAddUnits
- AddUnits.instAddGroup
- AddUnits.instAddMonoid
- AddUnits.instAddZeroClass
- AddUnits.instCoeHead
- AddUnits.instContinuousAdd
- AddUnits.instDiscreteTopology
- AddUnits.instFaithfulVAdd
- AddUnits.instInhabited
- AddUnits.instIsScalarTower
- AddUnits.instLinearOrder
- AddUnits.instLinearOrderedAddCommGroup
- AddUnits.instMeasurableSpace
- AddUnits.instNeg
- AddUnits.instPartialOrderAddUnits
- AddUnits.instPreorder
- AddUnits.instRepr
- AddUnits.instSub
- AddUnits.instSubNegAddMonoid
- AddUnits.instT2Space
- AddUnits.instTopologicalAddGroupOfContinuousAdd
- AddUnits.instTopologicalSpaceAddUnits
- AddUnits.instVAdd
- AddUnits.instVAdd_1
- AddUnits.instZero
- AddUnits.isScalarTower'
- AddUnits.isScalarTower'_left
- AddUnits.isometricVAdd
- AddUnits.measurableVAdd
- AddUnits.orderedAddCommGroup
- AddUnits.vaddCommClass'
- AddUnits.vaddCommClass_left
- AddUnits.vaddCommClass_right
- CanonicallyOrderedAddCommMonoid.toUniqueAddUnits
- ENNReal.instUniqueAddUnits
- FreeAddMonoid.uniqueAddUnits
- Nat.unique_addUnits
- instCanLiftAddUnitsValIsAddUnit
- instUniqueAddUnitsOfSubsingleton
See Note [custom simps projection]
Equations
- Units.Simps.val_inv u = ↑u⁻¹
See Note [custom simps projection]
Equations
- AddUnits.Simps.val_neg u = ↑(-u)
Units have decidable equality if the base Monoid
has decidable equality.
Equations
- x✝.instDecidableEq x = decidable_of_iff' (↑x✝ = ↑x) ⋯
Additive units have decidable equality
if the base AddMonoid
has deciable equality.
Equations
- x✝.instDecidableEq x = decidable_of_iff' (↑x✝ = ↑x) ⋯
Units of a monoid have a multiplication and multiplicative identity.
Equations
- Units.instMulOneClass = MulOneClass.mk ⋯ ⋯
Additive units of an additive monoid have an addition and an additive identity.
Equations
- AddUnits.instAddZeroClass = AddZeroClass.mk ⋯ ⋯
Units of a monoid form a DivInvMonoid
.
Equations
- Units.instDivInvMonoid = DivInvMonoid.mk ⋯ (fun (n : ℤ) (a : αˣ) => match n, a with | Int.ofNat n, a => a ^ n | Int.negSucc n, a => (a ^ n.succ)⁻¹) ⋯ ⋯ ⋯
Additive units of an additive monoid form a SubNegMonoid
.
Equations
- AddUnits.instSubNegAddMonoid = SubNegMonoid.mk ⋯ (fun (n : ℤ) (a : AddUnits α) => match n, a with | Int.ofNat n, a => n • a | Int.negSucc n, a => -(n.succ • a)) ⋯ ⋯ ⋯
Additive units of an additive monoid form an additive group.
Equations
- AddUnits.instAddGroup = AddGroup.mk ⋯
Units of a commutative monoid form a commutative group.
Equations
- Units.instCommGroupUnits = CommGroup.mk ⋯
Additive units of an additive commutative monoid form an additive commutative group.
Equations
- AddUnits.instAddCommGroupAddUnits = AddCommGroup.mk ⋯
For a, b
in a CommMonoid
such that a * b = 1
, makes a unit out of a
.
Equations
- Units.mkOfMulEqOne a b hab = { val := a, inv := b, val_inv := hab, inv_val := ⋯ }
For a, b
in an AddCommMonoid
such that a + b = 0
, makes an addUnit out of a
.
Equations
- AddUnits.mkOfAddEqZero a b hab = { val := a, neg := b, val_neg := hab, neg_val := ⋯ }
Partial division. It is defined when the
second argument is invertible, and unlike the division operator
in DivisionRing
it is not totalized at zero.
Equations
- «term_/ₚ_» = Lean.ParserDescr.trailingNode `«term_/ₚ_» 70 70 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " /ₚ ") (Lean.ParserDescr.cat `term 71))
The element of the group of units, corresponding to an element of a monoid which is a unit. When
α
is a DivisionMonoid
, use IsUnit.unit'
instead.
Equations
- h.unit = (Classical.choose h).copy a ⋯ ↑(Classical.choose h)⁻¹ ⋯
"The element of the additive group of additive units, corresponding to an element of
an additive monoid which is an additive unit. When α
is a SubtractionMonoid
, use
IsAddUnit.addUnit'
instead.
Equations
- h.addUnit = (Classical.choose h).copy a ⋯ ↑(-Classical.choose h) ⋯
The element of the group of units, corresponding to an element of a monoid which is a unit. As
opposed to IsUnit.unit
, the inverse is computable and comes from the inversion on α
. This is
useful to transfer properties of inversion in Units α
to α
. See also toUnits
.
The element of the additive group of additive units, corresponding to an element of
an additive monoid which is an additive unit. As opposed to IsAddUnit.addUnit
, the negation is
computable and comes from the negation on α
. This is useful to transfer properties of negation
in AddUnits α
to α
. See also toAddUnits
.
Constructs an inv operation for a Monoid
consisting only of units.
Equations
- invOfIsUnit h = { inv := fun (a : M) => ↑⋯.unit⁻¹ }
Constructs a CommGroup
structure on a CommMonoid
consisting only of units.