Documentation

Mathlib.Topology.MetricSpace.Pseudo.Constructions

Products of pseudometric spaces and other constructions #

This file constructs the supremum distance on binary products of pseudometric spaces and provides instances for type synonyms.

@[reducible, inline]
abbrev PseudoMetricSpace.induced {α : Type u_3} {β : Type u_4} (f : αβ) (m : PseudoMetricSpace β) :

Pseudometric space structure pulled back by a function.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def Inducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [TopologicalSpace α] [m : PseudoMetricSpace β] {f : αβ} (hf : Inducing f) :

    Pull back a pseudometric space structure by an inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a TopologicalSpace structure.

    Equations
    Instances For
      def UniformInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [UniformSpace α] [m : PseudoMetricSpace β] (f : αβ) (h : UniformInducing f) :

      Pull back a pseudometric space structure by a uniform inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a UniformSpace structure.

      Equations
      Instances For
        Equations
        theorem Subtype.dist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x : Subtype p) (y : Subtype p) :
        dist x y = dist x y
        theorem Subtype.nndist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x : Subtype p) (y : Subtype p) :
        nndist x y = nndist x y
        Equations
        Equations
        @[simp]
        theorem AddOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
        @[simp]
        theorem MulOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
        @[simp]
        theorem AddOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
        @[simp]
        theorem MulOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
        theorem NNReal.dist_eq (a : NNReal) (b : NNReal) :
        dist a b = |a - b|
        theorem NNReal.nndist_eq (a : NNReal) (b : NNReal) :
        nndist a b = max (a - b) (b - a)
        @[simp]
        @[simp]
        theorem NNReal.le_add_nndist (a : NNReal) (b : NNReal) :
        a b + nndist a b
        theorem NNReal.ball_zero_eq_Ico (c : ) :
        Metric.ball 0 c = Set.Ico 0 c.toNNReal
        theorem NNReal.closedBall_zero_eq_Icc {c : } (c_nn : 0 c) :
        Metric.closedBall 0 c = Set.Icc 0 c.toNNReal
        Equations
        theorem ULift.dist_eq {β : Type u_2} [PseudoMetricSpace β] (x : ULift.{u_3, u_2} β) (y : ULift.{u_3, u_2} β) :
        dist x y = dist x.down y.down
        theorem ULift.nndist_eq {β : Type u_2} [PseudoMetricSpace β] (x : ULift.{u_3, u_2} β) (y : ULift.{u_3, u_2} β) :
        nndist x y = nndist x.down y.down
        @[simp]
        theorem ULift.dist_up_up {β : Type u_2} [PseudoMetricSpace β] (x : β) (y : β) :
        dist { down := x } { down := y } = dist x y
        @[simp]
        theorem ULift.nndist_up_up {β : Type u_2} [PseudoMetricSpace β] (x : β) (y : β) :
        nndist { down := x } { down := y } = nndist x y
        Equations
        theorem Prod.dist_eq {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x : α × β} {y : α × β} :
        dist x y = max (dist x.1 y.1) (dist x.2 y.2)
        @[simp]
        theorem dist_prod_same_left {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x : α} {y₁ : β} {y₂ : β} :
        dist (x, y₁) (x, y₂) = dist y₁ y₂
        @[simp]
        theorem dist_prod_same_right {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x₁ : α} {x₂ : α} {y : β} :
        dist (x₁, y) (x₂, y) = dist x₁ x₂
        theorem ball_prod_same {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α) (y : β) (r : ) :
        theorem closedBall_prod_same {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α) (y : β) (r : ) :
        theorem sphere_prod {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α × β) (r : ) :
        theorem uniformContinuous_dist {α : Type u_1} [PseudoMetricSpace α] :
        UniformContinuous fun (p : α × α) => dist p.1 p.2
        theorem UniformContinuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f : βα} {g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
        UniformContinuous fun (b : β) => dist (f b) (g b)
        theorem continuous_dist {α : Type u_1} [PseudoMetricSpace α] :
        Continuous fun (p : α × α) => dist p.1 p.2
        theorem Continuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} {g : βα} (hf : Continuous f) (hg : Continuous g) :
        Continuous fun (b : β) => dist (f b) (g b)
        theorem Filter.Tendsto.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f : βα} {g : βα} {x : Filter β} {a : α} {b : α} (hf : Filter.Tendsto f x (nhds a)) (hg : Filter.Tendsto g x (nhds b)) :
        Filter.Tendsto (fun (x : β) => dist (f x) (g x)) x (nhds (dist a b))
        theorem continuous_iff_continuous_dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} :
        Continuous f Continuous fun (x : β × β) => dist (f x.1) (f x.2)
        theorem uniformContinuous_nndist {α : Type u_1} [PseudoMetricSpace α] :
        UniformContinuous fun (p : α × α) => nndist p.1 p.2
        theorem UniformContinuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f : βα} {g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
        UniformContinuous fun (b : β) => nndist (f b) (g b)
        theorem continuous_nndist {α : Type u_1} [PseudoMetricSpace α] :
        Continuous fun (p : α × α) => nndist p.1 p.2
        theorem Continuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} {g : βα} (hf : Continuous f) (hg : Continuous g) :
        Continuous fun (b : β) => nndist (f b) (g b)
        theorem Filter.Tendsto.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f : βα} {g : βα} {x : Filter β} {a : α} {b : α} (hf : Filter.Tendsto f x (nhds a)) (hg : Filter.Tendsto g x (nhds b)) :
        Filter.Tendsto (fun (x : β) => nndist (f x) (g x)) x (nhds (nndist a b))