Documentation

Mathlib.GroupTheory.FreeGroup.Basic

Free groups #

This file defines free groups over a type. Furthermore, it is shown that the free group construction is an instance of a monad. For the result that FreeGroup is the left adjoint to the forgetful functor from groups to types, see Algebra/Category/Group/Adjunctions.

Main definitions #

Main statements #

Implementation details #

First we introduce the one step reduction relation FreeGroup.Red.Step: w * x * x⁻¹ * v ~> w * v, its reflexive transitive closure FreeGroup.Red.trans and prove that its join is an equivalence relation. Then we introduce FreeGroup α as a quotient over FreeGroup.Red.Step.

For the additive version we introduce the same relation under a different name so that we can distinguish the quotient types more easily.

Tags #

free group, Newman's diamond lemma, Church-Rosser theorem

inductive FreeAddGroup.Red.Step {α : Type u} :
List (α × Bool)List (α × Bool)Prop

Reduction step for the additive free group relation: w + x + (-x) + v ~> w + v

inductive FreeGroup.Red.Step {α : Type u} :
List (α × Bool)List (α × Bool)Prop

Reduction step for the multiplicative free group relation: w * x * x⁻¹ * v ~> w * v

def FreeAddGroup.Red {α : Type u} :
List (α × Bool)List (α × Bool)Prop

Reflexive-transitive closure of Red.Step

Equations
def FreeGroup.Red {α : Type u} :
List (α × Bool)List (α × Bool)Prop

Reflexive-transitive closure of Red.Step

Equations
Instances For
theorem FreeAddGroup.Red.refl {α : Type u} {L : List (α × Bool)} :
theorem FreeGroup.Red.refl {α : Type u} {L : List (α × Bool)} :
theorem FreeAddGroup.Red.trans {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeAddGroup.Red L₁ L₂FreeAddGroup.Red L₂ L₃FreeAddGroup.Red L₁ L₃
theorem FreeGroup.Red.trans {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeGroup.Red L₁ L₂FreeGroup.Red L₂ L₃FreeGroup.Red L₁ L₃
theorem FreeAddGroup.Red.Step.length {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.Red.Step L₁ L₂L₂.length + 2 = L₁.length

Predicate asserting that the word w₁ can be reduced to w₂ in one step, i.e. there are words w₃ w₄ and letter x such that w₁ = w₃ + x + (-x) + w₄ and w₂ = w₃w₄

theorem FreeGroup.Red.Step.length {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.Red.Step L₁ L₂L₂.length + 2 = L₁.length

Predicate asserting that the word w₁ can be reduced to w₂ in one step, i.e. there are words w₃ w₄ and letter x such that w₁ = w₃xx⁻¹w₄ and w₂ = w₃w₄

@[simp]
theorem FreeAddGroup.Red.Step.not_rev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x : α} {b : Bool} :
FreeAddGroup.Red.Step (L₁ ++ (x, !b) :: (x, b) :: L₂) (L₁ ++ L₂)
@[simp]
theorem FreeGroup.Red.Step.not_rev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x : α} {b : Bool} :
FreeGroup.Red.Step (L₁ ++ (x, !b) :: (x, b) :: L₂) (L₁ ++ L₂)
@[simp]
theorem FreeAddGroup.Red.Step.cons_not {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeAddGroup.Red.Step ((x, b) :: (x, !b) :: L) L
@[simp]
theorem FreeGroup.Red.Step.cons_not {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeGroup.Red.Step ((x, b) :: (x, !b) :: L) L
@[simp]
theorem FreeAddGroup.Red.Step.cons_not_rev {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeAddGroup.Red.Step ((x, !b) :: (x, b) :: L) L
@[simp]
theorem FreeGroup.Red.Step.cons_not_rev {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeGroup.Red.Step ((x, !b) :: (x, b) :: L) L
theorem FreeAddGroup.Red.Step.append_left {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeAddGroup.Red.Step L₂ L₃FreeAddGroup.Red.Step (L₁ ++ L₂) (L₁ ++ L₃)
theorem FreeGroup.Red.Step.append_left {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeGroup.Red.Step L₂ L₃FreeGroup.Red.Step (L₁ ++ L₂) (L₁ ++ L₃)
theorem FreeAddGroup.Red.Step.cons {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x : α × Bool} (H : FreeAddGroup.Red.Step L₁ L₂) :
FreeAddGroup.Red.Step (x :: L₁) (x :: L₂)
theorem FreeGroup.Red.Step.cons {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x : α × Bool} (H : FreeGroup.Red.Step L₁ L₂) :
FreeGroup.Red.Step (x :: L₁) (x :: L₂)
theorem FreeAddGroup.Red.Step.append_right {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeAddGroup.Red.Step L₁ L₂FreeAddGroup.Red.Step (L₁ ++ L₃) (L₂ ++ L₃)
theorem FreeGroup.Red.Step.append_right {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeGroup.Red.Step L₁ L₂FreeGroup.Red.Step (L₁ ++ L₃) (L₂ ++ L₃)
theorem FreeAddGroup.Red.Step.cons_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {a : α} {b : Bool} :
FreeAddGroup.Red.Step ((a, b) :: L₁) L₂ (∃ (L : List (α × Bool)), FreeAddGroup.Red.Step L₁ L L₂ = (a, b) :: L) L₁ = (a, !b) :: L₂
theorem FreeGroup.Red.Step.cons_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {a : α} {b : Bool} :
FreeGroup.Red.Step ((a, b) :: L₁) L₂ (∃ (L : List (α × Bool)), FreeGroup.Red.Step L₁ L L₂ = (a, b) :: L) L₁ = (a, !b) :: L₂
theorem FreeAddGroup.Red.Step.cons_cons_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {p : α × Bool} :
theorem FreeGroup.Red.Step.cons_cons_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {p : α × Bool} :
FreeGroup.Red.Step (p :: L₁) (p :: L₂) FreeGroup.Red.Step L₁ L₂
theorem FreeAddGroup.Red.Step.append_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (L : List (α × Bool)) :
theorem FreeGroup.Red.Step.append_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (L : List (α × Bool)) :
FreeGroup.Red.Step (L ++ L₁) (L ++ L₂) FreeGroup.Red.Step L₁ L₂
theorem FreeAddGroup.Red.Step.diamond_aux {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} :
L₁ ++ (x1, b1) :: (x1, !b1) :: L₂ = L₃ ++ (x2, b2) :: (x2, !b2) :: L₄L₁ ++ L₂ = L₃ ++ L₄ ∃ (L₅ : List (α × Bool)), FreeAddGroup.Red.Step (L₁ ++ L₂) L₅ FreeAddGroup.Red.Step (L₃ ++ L₄) L₅
theorem FreeGroup.Red.Step.diamond_aux {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} :
L₁ ++ (x1, b1) :: (x1, !b1) :: L₂ = L₃ ++ (x2, b2) :: (x2, !b2) :: L₄L₁ ++ L₂ = L₃ ++ L₄ ∃ (L₅ : List (α × Bool)), FreeGroup.Red.Step (L₁ ++ L₂) L₅ FreeGroup.Red.Step (L₃ ++ L₄) L₅
theorem FreeAddGroup.Red.Step.diamond {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} :
FreeAddGroup.Red.Step L₁ L₃FreeAddGroup.Red.Step L₂ L₄L₁ = L₂L₃ = L₄ ∃ (L₅ : List (α × Bool)), FreeAddGroup.Red.Step L₃ L₅ FreeAddGroup.Red.Step L₄ L₅
theorem FreeGroup.Red.Step.diamond {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} :
FreeGroup.Red.Step L₁ L₃FreeGroup.Red.Step L₂ L₄L₁ = L₂L₃ = L₄ ∃ (L₅ : List (α × Bool)), FreeGroup.Red.Step L₃ L₅ FreeGroup.Red.Step L₄ L₅
theorem FreeAddGroup.Red.Step.to_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.Red.Step L₁ L₂FreeAddGroup.Red L₁ L₂
theorem FreeGroup.Red.Step.to_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.Red.Step L₁ L₂FreeGroup.Red L₁ L₂
theorem FreeAddGroup.Red.church_rosser {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeAddGroup.Red L₁ L₂FreeAddGroup.Red L₁ L₃Relation.Join FreeAddGroup.Red L₂ L₃

Church-Rosser theorem for word reduction: If w1 w2 w3 are words such that w1 reduces to w2 and w3 respectively, then there is a word w4 such that w2 and w3 reduce to w4 respectively. This is also known as Newman's diamond lemma.

theorem FreeGroup.Red.church_rosser {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} :
FreeGroup.Red L₁ L₂FreeGroup.Red L₁ L₃Relation.Join FreeGroup.Red L₂ L₃

Church-Rosser theorem for word reduction: If w1 w2 w3 are words such that w1 reduces to w2 and w3 respectively, then there is a word w4 such that w2 and w3 reduce to w4 respectively. This is also known as Newman's diamond lemma.

theorem FreeAddGroup.Red.cons_cons {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {p : α × Bool} :
FreeAddGroup.Red L₁ L₂FreeAddGroup.Red (p :: L₁) (p :: L₂)
theorem FreeGroup.Red.cons_cons {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {p : α × Bool} :
FreeGroup.Red L₁ L₂FreeGroup.Red (p :: L₁) (p :: L₂)
theorem FreeAddGroup.Red.cons_cons_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (p : α × Bool) :
FreeAddGroup.Red (p :: L₁) (p :: L₂) FreeAddGroup.Red L₁ L₂
theorem FreeGroup.Red.cons_cons_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (p : α × Bool) :
FreeGroup.Red (p :: L₁) (p :: L₂) FreeGroup.Red L₁ L₂
theorem FreeAddGroup.Red.append_append_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (L : List (α × Bool)) :
FreeAddGroup.Red (L ++ L₁) (L ++ L₂) FreeAddGroup.Red L₁ L₂
theorem FreeGroup.Red.append_append_left_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (L : List (α × Bool)) :
FreeGroup.Red (L ++ L₁) (L ++ L₂) FreeGroup.Red L₁ L₂
theorem FreeAddGroup.Red.append_append {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} (h₁ : FreeAddGroup.Red L₁ L₃) (h₂ : FreeAddGroup.Red L₂ L₄) :
FreeAddGroup.Red (L₁ ++ L₂) (L₃ ++ L₄)
theorem FreeGroup.Red.append_append {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {L₄ : List (α × Bool)} (h₁ : FreeGroup.Red L₁ L₃) (h₂ : FreeGroup.Red L₂ L₄) :
FreeGroup.Red (L₁ ++ L₂) (L₃ ++ L₄)
theorem FreeAddGroup.Red.to_append_iff {α : Type u} {L : List (α × Bool)} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.Red L (L₁ ++ L₂) ∃ (L₃ : List (α × Bool)) (L₄ : List (α × Bool)), L = L₃ ++ L₄ FreeAddGroup.Red L₃ L₁ FreeAddGroup.Red L₄ L₂
theorem FreeGroup.Red.to_append_iff {α : Type u} {L : List (α × Bool)} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.Red L (L₁ ++ L₂) ∃ (L₃ : List (α × Bool)) (L₄ : List (α × Bool)), L = L₃ ++ L₄ FreeGroup.Red L₃ L₁ FreeGroup.Red L₄ L₂
theorem FreeAddGroup.Red.nil_iff {α : Type u} {L : List (α × Bool)} :

The empty word [] only reduces to itself.

theorem FreeGroup.Red.nil_iff {α : Type u} {L : List (α × Bool)} :
FreeGroup.Red [] L L = []

The empty word [] only reduces to itself.

theorem FreeAddGroup.Red.singleton_iff {α : Type u} {L₁ : List (α × Bool)} {x : α × Bool} :
FreeAddGroup.Red [x] L₁ L₁ = [x]

A letter only reduces to itself.

theorem FreeGroup.Red.singleton_iff {α : Type u} {L₁ : List (α × Bool)} {x : α × Bool} :
FreeGroup.Red [x] L₁ L₁ = [x]

A letter only reduces to itself.

theorem FreeAddGroup.Red.cons_nil_iff_singleton {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeAddGroup.Red ((x, b) :: L) [] FreeAddGroup.Red L [(x, !b)]

If x is a letter and w is a word such that x + w reduces to the empty word, then w reduces to -x.

theorem FreeGroup.Red.cons_nil_iff_singleton {α : Type u} {L : List (α × Bool)} {x : α} {b : Bool} :
FreeGroup.Red ((x, b) :: L) [] FreeGroup.Red L [(x, !b)]

If x is a letter and w is a word such that xw reduces to the empty word, then w reduces to x⁻¹

theorem FreeAddGroup.Red.red_iff_irreducible {α : Type u} {L : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} (h : (x1, b1) (x2, b2)) :
FreeAddGroup.Red [(x1, !b1), (x2, b2)] L L = [(x1, !b1), (x2, b2)]
theorem FreeGroup.Red.red_iff_irreducible {α : Type u} {L : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} (h : (x1, b1) (x2, b2)) :
FreeGroup.Red [(x1, !b1), (x2, b2)] L L = [(x1, !b1), (x2, b2)]
theorem FreeAddGroup.Red.neg_of_red_of_ne {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} (H1 : (x1, b1) (x2, b2)) (H2 : FreeAddGroup.Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) :
FreeAddGroup.Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)

If x and y are distinct letters and w₁ w₂ are words such that x + w₁ reduces to y + w₂, then w₁ reduces to -x + y + w₂.

theorem FreeGroup.Red.inv_of_red_of_ne {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {x1 : α} {b1 : Bool} {x2 : α} {b2 : Bool} (H1 : (x1, b1) (x2, b2)) (H2 : FreeGroup.Red ((x1, b1) :: L₁) ((x2, b2) :: L₂)) :
FreeGroup.Red L₁ ((x1, !b1) :: (x2, b2) :: L₂)

If x and y are distinct letters and w₁ w₂ are words such that xw₁ reduces to yw₂, then w₁ reduces to x⁻¹yw₂.

theorem FreeAddGroup.Red.Step.sublist {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (H : FreeAddGroup.Red.Step L₁ L₂) :
L₂.Sublist L₁
theorem FreeGroup.Red.Step.sublist {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (H : FreeGroup.Red.Step L₁ L₂) :
L₂.Sublist L₁
theorem FreeAddGroup.Red.sublist {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.Red L₁ L₂L₂.Sublist L₁

If w₁ w₂ are words such that w₁ reduces to w₂, then w₂ is a sublist of w₁.

theorem FreeGroup.Red.sublist {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.Red L₁ L₂L₂.Sublist L₁

If w₁ w₂ are words such that w₁ reduces to w₂, then w₂ is a sublist of w₁.

theorem FreeAddGroup.Red.length_le {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeAddGroup.Red L₁ L₂) :
L₂.length L₁.length
theorem FreeGroup.Red.length_le {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeGroup.Red L₁ L₂) :
L₂.length L₁.length
theorem FreeAddGroup.Red.sizeof_of_step {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.Red.Step L₁ L₂sizeOf L₂ < sizeOf L₁
theorem FreeGroup.Red.sizeof_of_step {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.Red.Step L₁ L₂sizeOf L₂ < sizeOf L₁
theorem FreeAddGroup.Red.length {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeAddGroup.Red L₁ L₂) :
∃ (n : ), L₁.length = L₂.length + 2 * n
theorem FreeGroup.Red.length {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeGroup.Red L₁ L₂) :
∃ (n : ), L₁.length = L₂.length + 2 * n
theorem FreeAddGroup.Red.antisymm {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h₁₂ : FreeAddGroup.Red L₁ L₂) (h₂₁ : FreeAddGroup.Red L₂ L₁) :
L₁ = L₂
theorem FreeGroup.Red.antisymm {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h₁₂ : FreeGroup.Red L₁ L₂) (h₂₁ : FreeGroup.Red L₂ L₁) :
L₁ = L₂
theorem FreeAddGroup.join_red_of_step {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeAddGroup.Red.Step L₁ L₂) :
Relation.Join FreeAddGroup.Red L₁ L₂
theorem FreeGroup.join_red_of_step {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeGroup.Red.Step L₁ L₂) :
Relation.Join FreeGroup.Red L₁ L₂
theorem FreeAddGroup.eqvGen_step_iff_join_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
Relation.EqvGen FreeAddGroup.Red.Step L₁ L₂ Relation.Join FreeAddGroup.Red L₁ L₂
theorem FreeGroup.eqvGen_step_iff_join_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
Relation.EqvGen FreeGroup.Red.Step L₁ L₂ Relation.Join FreeGroup.Red L₁ L₂
def FreeAddGroup (α : Type u) :

The free additive group over a type, i.e. the words formed by the elements of the type and their formal inverses, quotient by one step reduction.

Equations
Instances For
def FreeGroup (α : Type u) :

The free group over a type, i.e. the words formed by the elements of the type and their formal inverses, quotient by one step reduction.

Equations
Instances For
def FreeAddGroup.mk {α : Type u} (L : List (α × Bool)) :

The canonical map from list (α × bool) to the free additive group on α.

Equations
def FreeGroup.mk {α : Type u} (L : List (α × Bool)) :

The canonical map from List (α × Bool) to the free group on α.

Equations
@[simp]
theorem FreeAddGroup.quot_mk_eq_mk {α : Type u} {L : List (α × Bool)} :
Quot.mk FreeAddGroup.Red.Step L = FreeAddGroup.mk L
@[simp]
theorem FreeGroup.quot_mk_eq_mk {α : Type u} {L : List (α × Bool)} :
Quot.mk FreeGroup.Red.Step L = FreeGroup.mk L
@[simp]
theorem FreeAddGroup.quot_lift_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)β) (H : ∀ (L₁ L₂ : List (α × Bool)), FreeAddGroup.Red.Step L₁ L₂f L₁ = f L₂) :
@[simp]
theorem FreeGroup.quot_lift_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)β) (H : ∀ (L₁ L₂ : List (α × Bool)), FreeGroup.Red.Step L₁ L₂f L₁ = f L₂) :
@[simp]
theorem FreeAddGroup.quot_liftOn_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)β) (H : ∀ (L₁ L₂ : List (α × Bool)), FreeAddGroup.Red.Step L₁ L₂f L₁ = f L₂) :
@[simp]
theorem FreeGroup.quot_liftOn_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)β) (H : ∀ (L₁ L₂ : List (α × Bool)), FreeGroup.Red.Step L₁ L₂f L₁ = f L₂) :
@[simp]
theorem FreeAddGroup.quot_map_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)List (β × Bool)) (H : (FreeAddGroup.Red.Step FreeAddGroup.Red.Step) f f) :
@[simp]
theorem FreeGroup.quot_map_mk {α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool)List (β × Bool)) (H : (FreeGroup.Red.Step FreeGroup.Red.Step) f f) :
Equations
instance FreeGroup.instOne {α : Type u} :
Equations
Equations
  • FreeAddGroup.instInhabited = { default := 0 }
Equations
  • FreeGroup.instInhabited = { default := 1 }
Equations
  • FreeAddGroup.instUniqueOfIsEmpty = id inferInstance
Equations
  • FreeGroup.instUniqueOfIsEmpty = id inferInstance
instance FreeAddGroup.instAdd {α : Type u} :
Equations
  • One or more equations did not get rendered due to their size.
theorem FreeAddGroup.instAdd.proof_1 {α : Type u_1} (L₁ : List (α × Bool)) (_L₂ : List (α × Bool)) (_L₃ : List (α × Bool)) (H : FreeAddGroup.Red.Step _L₂ _L₃) :
Quot.mk FreeAddGroup.Red.Step (L₁ ++ _L₂) = Quot.mk FreeAddGroup.Red.Step (L₁ ++ _L₃)
theorem FreeAddGroup.instAdd.proof_2 {α : Type u_1} (y : FreeAddGroup α) (_L₁ : List (α × Bool)) (_L₂ : List (α × Bool)) (H : FreeAddGroup.Red.Step _L₁ _L₂) :
(fun (L₁ : List (α × Bool)) => Quot.liftOn y (fun (L₂ : List (α × Bool)) => FreeAddGroup.mk (L₁ ++ L₂)) ) _L₁ = (fun (L₁ : List (α × Bool)) => Quot.liftOn y (fun (L₂ : List (α × Bool)) => FreeAddGroup.mk (L₁ ++ L₂)) ) _L₂
instance FreeGroup.instMul {α : Type u} :
Equations
@[simp]
theorem FreeAddGroup.add_mk {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
@[simp]
theorem FreeGroup.mul_mk {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.mk L₁ * FreeGroup.mk L₂ = FreeGroup.mk (L₁ ++ L₂)
def FreeAddGroup.negRev {α : Type u} (w : List (α × Bool)) :
List (α × Bool)

Transform a word representing a free group element into a word representing its negative.

Equations
def FreeGroup.invRev {α : Type u} (w : List (α × Bool)) :
List (α × Bool)

Transform a word representing a free group element into a word representing its inverse.

Equations
@[simp]
theorem FreeAddGroup.negRev_length {α : Type u} {L₁ : List (α × Bool)} :
(FreeAddGroup.negRev L₁).length = L₁.length
@[simp]
theorem FreeGroup.invRev_length {α : Type u} {L₁ : List (α × Bool)} :
(FreeGroup.invRev L₁).length = L₁.length
@[simp]
@[simp]
theorem FreeGroup.invRev_invRev {α : Type u} {L₁ : List (α × Bool)} :
@[simp]
theorem FreeAddGroup.negRev_involutive {α : Type u} :
Function.Involutive FreeAddGroup.negRev
theorem FreeAddGroup.negRev_injective {α : Type u} :
Function.Injective FreeAddGroup.negRev
theorem FreeGroup.invRev_injective {α : Type u} :
Function.Injective FreeGroup.invRev
theorem FreeAddGroup.negRev_surjective {α : Type u} :
Function.Surjective FreeAddGroup.negRev
theorem FreeAddGroup.negRev_bijective {α : Type u} :
Function.Bijective FreeAddGroup.negRev
theorem FreeGroup.invRev_bijective {α : Type u} :
Function.Bijective FreeGroup.invRev
instance FreeAddGroup.instNeg {α : Type u} :
Equations
  • FreeAddGroup.instNeg = { neg := Quot.map FreeAddGroup.negRev }
instance FreeGroup.instInv {α : Type u} :
Equations
  • FreeGroup.instInv = { inv := Quot.map FreeGroup.invRev }
theorem FreeGroup.Red.Step.invRev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeGroup.Red.Step L₁ L₂) :
theorem FreeAddGroup.Red.negRev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeAddGroup.Red L₁ L₂) :
theorem FreeGroup.Red.invRev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} (h : FreeGroup.Red L₁ L₂) :
@[simp]
@[simp]
@[simp]
theorem FreeGroup.red_invRev_iff {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
theorem FreeAddGroup.instAddGroup.proof_9 {α : Type u_1} :
∀ (n : ) (a : FreeAddGroup α), zsmulRec (Int.negSucc n) a = zsmulRec (Int.negSucc n) a
theorem FreeAddGroup.instAddGroup.proof_4 {α : Type u_1} :
∀ (x : FreeAddGroup α), nsmulRec 0 x = nsmulRec 0 x
Equations
theorem FreeAddGroup.instAddGroup.proof_1 {α : Type u_1} :
∀ (a b c : FreeAddGroup α), a + b + c = a + (b + c)
theorem FreeAddGroup.instAddGroup.proof_8 {α : Type u_1} :
∀ (n : ) (a : FreeAddGroup α), zsmulRec (Int.ofNat n.succ) a = zsmulRec (Int.ofNat n.succ) a
theorem FreeAddGroup.instAddGroup.proof_10 {α : Type u_1} :
∀ (a : FreeAddGroup α), -a + a = 0
theorem FreeAddGroup.instAddGroup.proof_7 {α : Type u_1} :
∀ (a : FreeAddGroup α), zsmulRec 0 a = zsmulRec 0 a
theorem FreeAddGroup.instAddGroup.proof_5 {α : Type u_1} :
∀ (n : ) (x : FreeAddGroup α), nsmulRec (n + 1) x = nsmulRec (n + 1) x
theorem FreeAddGroup.instAddGroup.proof_3 {α : Type u_1} :
∀ (a : FreeAddGroup α), a + 0 = a
theorem FreeAddGroup.instAddGroup.proof_6 {α : Type u_1} :
∀ (a b : FreeAddGroup α), a - b = a - b
theorem FreeAddGroup.instAddGroup.proof_2 {α : Type u_1} :
∀ (a : FreeAddGroup α), 0 + a = a
instance FreeGroup.instGroup {α : Type u} :
Equations
def FreeAddGroup.of {α : Type u} (x : α) :

of is the canonical injection from the type to the free group over that type by sending each element to the equivalence class of the letter that is the element.

Equations
def FreeGroup.of {α : Type u} (x : α) :

of is the canonical injection from the type to the free group over that type by sending each element to the equivalence class of the letter that is the element.

Equations
theorem FreeAddGroup.Red.exact {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeAddGroup.mk L₁ = FreeAddGroup.mk L₂ Relation.Join FreeAddGroup.Red L₁ L₂
theorem FreeGroup.Red.exact {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} :
FreeGroup.mk L₁ = FreeGroup.mk L₂ Relation.Join FreeGroup.Red L₁ L₂
theorem FreeAddGroup.of_injective {α : Type u} :
Function.Injective FreeAddGroup.of

The canonical map from the type to the additive free group is an injection.

theorem FreeGroup.of_injective {α : Type u} :
Function.Injective FreeGroup.of

The canonical map from the type to the free group is an injection.

def FreeAddGroup.Lift.aux {α : Type u} {β : Type v} [AddGroup β] (f : αβ) :
List (α × Bool)β

Given f : α → β with β an additive group, the canonical map list (α × bool) → β

Equations
def FreeGroup.Lift.aux {α : Type u} {β : Type v} [Group β] (f : αβ) :
List (α × Bool)β

Given f : α → β with β a group, the canonical map List (α × Bool) → β

Equations
theorem FreeAddGroup.Red.Step.lift {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {β : Type v} [AddGroup β] {f : αβ} (H : FreeAddGroup.Red.Step L₁ L₂) :
theorem FreeGroup.Red.Step.lift {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {β : Type v} [Group β] {f : αβ} (H : FreeGroup.Red.Step L₁ L₂) :
theorem FreeAddGroup.lift.proof_1 {α : Type u_1} {β : Type u_2} [AddGroup β] (f : αβ) :
theorem FreeAddGroup.lift.proof_3 {α : Type u_1} {β : Type u_2} [AddGroup β] (g : FreeAddGroup α →+ β) :
(fun (f : αβ) => AddMonoidHom.mk' (Quot.lift (FreeAddGroup.Lift.aux f) ) ) ((fun (g : FreeAddGroup α →+ β) => g FreeAddGroup.of) g) = g
def FreeAddGroup.lift {α : Type u} {β : Type v} [AddGroup β] :
(αβ) (FreeAddGroup α →+ β)

If β is an additive group, then any function from α to β extends uniquely to an additive group homomorphism from the free additive group over α to β

Equations
  • One or more equations did not get rendered due to their size.
theorem FreeAddGroup.lift.proof_2 {α : Type u_1} {β : Type u_2} [AddGroup β] (f : αβ) :
[fun (x : α) => (fun (x : α × Bool) => bif x.2 then f x.1 else -f x.1) (x, true)].sum = fun (x : α) => (fun (x : α × Bool) => bif x.2 then f x.1 else -f x.1) (x, true)
@[simp]
theorem FreeGroup.lift_symm_apply {α : Type u} {β : Type v} [Group β] (g : FreeGroup α →* β) :
∀ (a : α), FreeGroup.lift.symm g a = (g FreeGroup.of) a
@[simp]
theorem FreeAddGroup.lift_symm_apply {α : Type u} {β : Type v} [AddGroup β] (g : FreeAddGroup α →+ β) :
∀ (a : α), FreeAddGroup.lift.symm g a = (g FreeAddGroup.of) a
def FreeGroup.lift {α : Type u} {β : Type v} [Group β] :
(αβ) (FreeGroup α →* β)

If β is a group, then any function from α to β extends uniquely to a group homomorphism from the free group over α to β

Equations
@[simp]
theorem FreeAddGroup.lift.mk {α : Type u} {L : List (α × Bool)} {β : Type v} [AddGroup β] {f : αβ} :
(FreeAddGroup.lift f) (FreeAddGroup.mk L) = (List.map (fun (x : α × Bool) => bif x.2 then f x.1 else -f x.1) L).sum
@[simp]
theorem FreeGroup.lift.mk {α : Type u} {L : List (α × Bool)} {β : Type v} [Group β] {f : αβ} :
(FreeGroup.lift f) (FreeGroup.mk L) = (List.map (fun (x : α × Bool) => bif x.2 then f x.1 else (f x.1)⁻¹) L).prod
@[simp]
theorem FreeAddGroup.lift.of {α : Type u} {β : Type v} [AddGroup β] {f : αβ} {x : α} :
(FreeAddGroup.lift f) (FreeAddGroup.of x) = f x
@[simp]
theorem FreeGroup.lift.of {α : Type u} {β : Type v} [Group β] {f : αβ} {x : α} :
(FreeGroup.lift f) (FreeGroup.of x) = f x
theorem FreeAddGroup.lift.unique {α : Type u} {β : Type v} [AddGroup β] {f : αβ} (g : FreeAddGroup α →+ β) (hg : ∀ (x : α), g (FreeAddGroup.of x) = f x) {x : FreeAddGroup α} :
g x = (FreeAddGroup.lift f) x
theorem FreeGroup.lift.unique {α : Type u} {β : Type v} [Group β] {f : αβ} (g : FreeGroup α →* β) (hg : ∀ (x : α), g (FreeGroup.of x) = f x) {x : FreeGroup α} :
g x = (FreeGroup.lift f) x
theorem FreeAddGroup.ext_hom {α : Type u} {G : Type u_1} [AddGroup G] (f : FreeAddGroup α →+ G) (g : FreeAddGroup α →+ G) (h : ∀ (a : α), f (FreeAddGroup.of a) = g (FreeAddGroup.of a)) :
f = g

Two homomorphisms out of a free additive group are equal if they are equal on generators. See note [partially-applied ext lemmas].

theorem FreeGroup.ext_hom_iff {α : Type u} {G : Type u_1} [Group G] {f : FreeGroup α →* G} {g : FreeGroup α →* G} :
f = g ∀ (a : α), f (FreeGroup.of a) = g (FreeGroup.of a)
theorem FreeAddGroup.ext_hom_iff {α : Type u} {G : Type u_1} [AddGroup G] {f : FreeAddGroup α →+ G} {g : FreeAddGroup α →+ G} :
f = g ∀ (a : α), f (FreeAddGroup.of a) = g (FreeAddGroup.of a)
theorem FreeGroup.ext_hom {α : Type u} {G : Type u_1} [Group G] (f : FreeGroup α →* G) (g : FreeGroup α →* G) (h : ∀ (a : α), f (FreeGroup.of a) = g (FreeGroup.of a)) :
f = g

Two homomorphisms out of a free group are equal if they are equal on generators.

See note [partially-applied ext lemmas].

theorem FreeAddGroup.lift_of_eq_id (α : Type u_1) :
FreeAddGroup.lift FreeAddGroup.of = AddMonoidHom.id (FreeAddGroup α)
theorem FreeGroup.lift_of_eq_id (α : Type u_1) :
FreeGroup.lift FreeGroup.of = MonoidHom.id (FreeGroup α)
theorem FreeAddGroup.lift.of_eq {α : Type u} (x : FreeAddGroup α) :
(FreeAddGroup.lift FreeAddGroup.of) x = x
theorem FreeGroup.lift.of_eq {α : Type u} (x : FreeGroup α) :
(FreeGroup.lift FreeGroup.of) x = x
theorem FreeAddGroup.lift.range_le {α : Type u} {β : Type v} [AddGroup β] {f : αβ} {s : AddSubgroup β} (H : Set.range f s) :
(FreeAddGroup.lift f).range s
theorem FreeGroup.lift.range_le {α : Type u} {β : Type v} [Group β] {f : αβ} {s : Subgroup β} (H : Set.range f s) :
(FreeGroup.lift f).range s
theorem FreeAddGroup.lift.range_eq_closure {α : Type u} {β : Type v} [AddGroup β] {f : αβ} :
(FreeAddGroup.lift f).range = AddSubgroup.closure (Set.range f)
theorem FreeGroup.lift.range_eq_closure {α : Type u} {β : Type v} [Group β] {f : αβ} :
(FreeGroup.lift f).range = Subgroup.closure (Set.range f)
@[simp]
@[simp]
theorem FreeGroup.closure_range_of (α : Type u_1) :

The generators of FreeGroup α generate FreeGroup α. That is, the subgroup closure of the set of generators equals .

theorem FreeAddGroup.map.proof_2 {α : Type u_1} {β : Type u_2} (f : αβ) :
∀ (a b : FreeAddGroup α), Quot.map (List.map fun (x : α × Bool) => (f x.1, x.2)) (a + b) = Quot.map (List.map fun (x : α × Bool) => (f x.1, x.2)) a + Quot.map (List.map fun (x : α × Bool) => (f x.1, x.2)) b
theorem FreeAddGroup.map.proof_1 {α : Type u_1} {β : Type u_2} (f : αβ) (L₁ : List (α × Bool)) (L₂ : List (α × Bool)) (H : FreeAddGroup.Red.Step L₁ L₂) :
FreeAddGroup.Red.Step (List.map (fun (x : α × Bool) => (f x.1, x.2)) L₁) (List.map (fun (x : α × Bool) => (f x.1, x.2)) L₂)
def FreeAddGroup.map {α : Type u} {β : Type v} (f : αβ) :

Any function from α to β extends uniquely to an additive group homomorphism from the additive free group over α to the additive free group over β.

Equations
def FreeGroup.map {α : Type u} {β : Type v} (f : αβ) :

Any function from α to β extends uniquely to a group homomorphism from the free group over α to the free group over β.

Equations
@[simp]
theorem FreeAddGroup.map.mk {α : Type u} {L : List (α × Bool)} {β : Type v} {f : αβ} :
(FreeAddGroup.map f) (FreeAddGroup.mk L) = FreeAddGroup.mk (List.map (fun (x : α × Bool) => (f x.1, x.2)) L)
@[simp]
theorem FreeGroup.map.mk {α : Type u} {L : List (α × Bool)} {β : Type v} {f : αβ} :
(FreeGroup.map f) (FreeGroup.mk L) = FreeGroup.mk (List.map (fun (x : α × Bool) => (f x.1, x.2)) L)
@[simp]
theorem FreeAddGroup.map.id {α : Type u} (x : FreeAddGroup α) :
@[simp]
theorem FreeGroup.map.id {α : Type u} (x : FreeGroup α) :
(FreeGroup.map id) x = x
@[simp]
theorem FreeAddGroup.map.id' {α : Type u} (x : FreeAddGroup α) :
(FreeAddGroup.map fun (z : α) => z) x = x
@[simp]
theorem FreeGroup.map.id' {α : Type u} (x : FreeGroup α) :
(FreeGroup.map fun (z : α) => z) x = x
theorem FreeAddGroup.map.comp {α : Type u} {β : Type v} {γ : Type w} (f : αβ) (g : βγ) (x : FreeAddGroup α) :
theorem FreeGroup.map.comp {α : Type u} {β : Type v} {γ : Type w} (f : αβ) (g : βγ) (x : FreeGroup α) :
@[simp]
theorem FreeAddGroup.map.of {α : Type u} {β : Type v} {f : αβ} {x : α} :
@[simp]
theorem FreeGroup.map.of {α : Type u} {β : Type v} {f : αβ} {x : α} :
theorem FreeAddGroup.map.unique {α : Type u} {β : Type v} {f : αβ} (g : FreeAddGroup α →+ FreeAddGroup β) (hg : ∀ (x : α), g (FreeAddGroup.of x) = FreeAddGroup.of (f x)) {x : FreeAddGroup α} :
theorem FreeGroup.map.unique {α : Type u} {β : Type v} {f : αβ} (g : FreeGroup α →* FreeGroup β) (hg : ∀ (x : α), g (FreeGroup.of x) = FreeGroup.of (f x)) {x : FreeGroup α} :
g x = (FreeGroup.map f) x
theorem FreeAddGroup.map_eq_lift {α : Type u} {β : Type v} {f : αβ} {x : FreeAddGroup α} :
(FreeAddGroup.map f) x = (FreeAddGroup.lift (FreeAddGroup.of f)) x
theorem FreeGroup.map_eq_lift {α : Type u} {β : Type v} {f : αβ} {x : FreeGroup α} :
(FreeGroup.map f) x = (FreeGroup.lift (FreeGroup.of f)) x
theorem FreeAddGroup.freeAddGroupCongr.proof_1 {α : Type u_1} {β : Type u_2} (e : α β) (x : FreeAddGroup α) :
(FreeAddGroup.map e.symm) ((FreeAddGroup.map e) x) = x
def FreeAddGroup.freeAddGroupCongr {α : Type u_1} {β : Type u_2} (e : α β) :

Equivalent types give rise to additively equivalent additive free groups.

Equations
theorem FreeAddGroup.freeAddGroupCongr.proof_3 {α : Type u_1} {β : Type u_2} (e : α β) (a : FreeAddGroup α) (b : FreeAddGroup α) :
(FreeAddGroup.map e) (a + b) = (FreeAddGroup.map e) a + (FreeAddGroup.map e) b
theorem FreeAddGroup.freeAddGroupCongr.proof_2 {α : Type u_2} {β : Type u_1} (e : α β) (x : FreeAddGroup β) :
(FreeAddGroup.map e) ((FreeAddGroup.map e.symm) x) = x
@[simp]
theorem FreeAddGroup.freeAddGroupCongr_apply {α : Type u_1} {β : Type u_2} (e : α β) (a : FreeAddGroup α) :
@[simp]
theorem FreeGroup.freeGroupCongr_apply {α : Type u_1} {β : Type u_2} (e : α β) (a : FreeGroup α) :
def FreeGroup.freeGroupCongr {α : Type u_1} {β : Type u_2} (e : α β) :

Equivalent types give rise to multiplicatively equivalent free groups.

The converse can be found in GroupTheory.FreeAbelianGroupFinsupp, as Equiv.of_freeGroupEquiv

Equations
@[simp]
theorem FreeGroup.freeGroupCongr_symm {α : Type u_1} {β : Type u_2} (e : α β) :
theorem FreeAddGroup.freeAddGroupCongr_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : α β) (f : β γ) :
theorem FreeGroup.freeGroupCongr_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (e : α β) (f : β γ) :

If α is an additive group, then any function from α to α extends uniquely to an additive homomorphism from the additive free group over α to α.

Equations
  • FreeAddGroup.sum = FreeAddGroup.lift id
def FreeGroup.prod {α : Type u} [Group α] :

If α is a group, then any function from α to α extends uniquely to a homomorphism from the free group over α to α. This is the multiplicative version of FreeGroup.sum.

Equations
  • FreeGroup.prod = FreeGroup.lift id
@[simp]
theorem FreeAddGroup.sum_mk {α : Type u} {L : List (α × Bool)} [AddGroup α] :
FreeAddGroup.sum (FreeAddGroup.mk L) = (List.map (fun (x : α × Bool) => bif x.2 then x.1 else -x.1) L).sum
@[simp]
theorem FreeGroup.prod_mk {α : Type u} {L : List (α × Bool)} [Group α] :
FreeGroup.prod (FreeGroup.mk L) = (List.map (fun (x : α × Bool) => bif x.2 then x.1 else x.1⁻¹) L).prod
@[simp]
theorem FreeAddGroup.sum.of {α : Type u} [AddGroup α] {x : α} :
FreeAddGroup.sum (FreeAddGroup.of x) = x
@[simp]
theorem FreeGroup.prod.of {α : Type u} [Group α] {x : α} :
FreeGroup.prod (FreeGroup.of x) = x
theorem FreeAddGroup.sum.unique {α : Type u} [AddGroup α] (g : FreeAddGroup α →+ α) (hg : ∀ (x : α), g (FreeAddGroup.of x) = x) {x : FreeAddGroup α} :
g x = FreeAddGroup.sum x
theorem FreeGroup.prod.unique {α : Type u} [Group α] (g : FreeGroup α →* α) (hg : ∀ (x : α), g (FreeGroup.of x) = x) {x : FreeGroup α} :
g x = FreeGroup.prod x
theorem FreeAddGroup.lift_eq_sum_map {α : Type u} {β : Type v} [AddGroup β] {f : αβ} {x : FreeAddGroup α} :
(FreeAddGroup.lift f) x = FreeAddGroup.sum ((FreeAddGroup.map f) x)
theorem FreeGroup.lift_eq_prod_map {α : Type u} {β : Type v} [Group β] {f : αβ} {x : FreeGroup α} :
(FreeGroup.lift f) x = FreeGroup.prod ((FreeGroup.map f) x)
def FreeGroup.sum {α : Type u} [AddGroup α] (x : FreeGroup α) :
α

If α is a group, then any function from α to α extends uniquely to a homomorphism from the free group over α to α. This is the additive version of Prod.

Equations
  • x.sum = FreeGroup.prod x
@[simp]
theorem FreeGroup.sum_mk {α : Type u} {L : List (α × Bool)} [AddGroup α] :
(FreeGroup.mk L).sum = (List.map (fun (x : α × Bool) => bif x.2 then x.1 else -x.1) L).sum
@[simp]
theorem FreeGroup.sum.of {α : Type u} [AddGroup α] {x : α} :
(FreeGroup.of x).sum = x
@[simp]
theorem FreeGroup.sum.map_mul {α : Type u} [AddGroup α] {x : FreeGroup α} {y : FreeGroup α} :
(x * y).sum = x.sum + y.sum
@[simp]
@[simp]
theorem FreeGroup.sum.map_inv {α : Type u} [AddGroup α] {x : FreeGroup α} :
x⁻¹.sum = -x.sum
theorem FreeAddGroup.freeAddGroupEmptyEquivAddUnit.proof_2 :
∀ (x : Unit), (fun (x : FreeAddGroup Empty) => ()) ((fun (x : Unit) => 0) x) = x

The bijection between the additive free group on the empty type, and a type with one element.

Equations
  • One or more equations did not get rendered due to their size.
theorem FreeAddGroup.freeAddGroupEmptyEquivAddUnit.proof_1 :
∀ (x : FreeAddGroup Empty), (fun (x : Unit) => 0) ((fun (x : FreeAddGroup Empty) => ()) x) = x

The bijection between the free group on the empty type, and a type with one element.

Equations
  • One or more equations did not get rendered due to their size.

The bijection between the free group on a singleton, and the integers.

Equations
  • One or more equations did not get rendered due to their size.
theorem FreeAddGroup.induction_on {α : Type u} {C : FreeAddGroup αProp} (z : FreeAddGroup α) (C1 : C 0) (Cp : ∀ (x : α), C (pure x)) (Ci : ∀ (x : α), C (pure x)C (-pure x)) (Cm : ∀ (x y : FreeAddGroup α), C xC yC (x + y)) :
C z
theorem FreeGroup.induction_on {α : Type u} {C : FreeGroup αProp} (z : FreeGroup α) (C1 : C 1) (Cp : ∀ (x : α), C (pure x)) (Ci : ∀ (x : α), C (pure x)C (pure x)⁻¹) (Cm : ∀ (x y : FreeGroup α), C xC yC (x * y)) :
C z
theorem FreeAddGroup.map_pure {α : Type u} {β : Type u} (f : αβ) (x : α) :
f <$> pure x = pure (f x)
theorem FreeGroup.map_pure {α : Type u} {β : Type u} (f : αβ) (x : α) :
f <$> pure x = pure (f x)
@[simp]
theorem FreeAddGroup.map_zero {α : Type u} {β : Type u} (f : αβ) :
f <$> 0 = 0
@[simp]
theorem FreeGroup.map_one {α : Type u} {β : Type u} (f : αβ) :
f <$> 1 = 1
@[simp]
theorem FreeAddGroup.map_add {α : Type u} {β : Type u} (f : αβ) (x : FreeAddGroup α) (y : FreeAddGroup α) :
f <$> (x + y) = f <$> x + f <$> y
@[simp]
theorem FreeGroup.map_mul {α : Type u} {β : Type u} (f : αβ) (x : FreeGroup α) (y : FreeGroup α) :
f <$> (x * y) = f <$> x * f <$> y
@[simp]
theorem FreeAddGroup.map_neg {α : Type u} {β : Type u} (f : αβ) (x : FreeAddGroup α) :
f <$> (-x) = -f <$> x
@[simp]
theorem FreeGroup.map_inv {α : Type u} {β : Type u} (f : αβ) (x : FreeGroup α) :
f <$> x⁻¹ = (f <$> x)⁻¹
theorem FreeAddGroup.pure_bind {α : Type u} {β : Type u} (f : αFreeAddGroup β) (x : α) :
pure x >>= f = f x
theorem FreeGroup.pure_bind {α : Type u} {β : Type u} (f : αFreeGroup β) (x : α) :
pure x >>= f = f x
@[simp]
theorem FreeAddGroup.zero_bind {α : Type u} {β : Type u} (f : αFreeAddGroup β) :
0 >>= f = 0
@[simp]
theorem FreeGroup.one_bind {α : Type u} {β : Type u} (f : αFreeGroup β) :
1 >>= f = 1
@[simp]
theorem FreeAddGroup.add_bind {α : Type u} {β : Type u} (f : αFreeAddGroup β) (x : FreeAddGroup α) (y : FreeAddGroup α) :
x + y >>= f = (x >>= f) + (y >>= f)
@[simp]
theorem FreeGroup.mul_bind {α : Type u} {β : Type u} (f : αFreeGroup β) (x : FreeGroup α) (y : FreeGroup α) :
x * y >>= f = (x >>= f) * (y >>= f)
@[simp]
theorem FreeAddGroup.neg_bind {α : Type u} {β : Type u} (f : αFreeAddGroup β) (x : FreeAddGroup α) :
-x >>= f = -(x >>= f)
@[simp]
theorem FreeGroup.inv_bind {α : Type u} {β : Type u} (f : αFreeGroup β) (x : FreeGroup α) :
x⁻¹ >>= f = (x >>= f)⁻¹
def FreeAddGroup.reduce {α : Type u} [DecidableEq α] (L : List (α × Bool)) :
List (α × Bool)

The maximal reduction of a word. It is computable iff α has decidable equality.

Equations
  • One or more equations did not get rendered due to their size.
def FreeGroup.reduce {α : Type u} [DecidableEq α] (L : List (α × Bool)) :
List (α × Bool)

The maximal reduction of a word. It is computable iff α has decidable equality.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem FreeAddGroup.reduce.cons {α : Type u} {L : List (α × Bool)} [DecidableEq α] (x : α × Bool) :
FreeAddGroup.reduce (x :: L) = List.casesOn (FreeAddGroup.reduce L) [x] fun (hd : α × Bool) (tl : List (α × Bool)) => if x.1 = hd.1 x.2 = !hd.2 then tl else x :: hd :: tl
@[simp]
theorem FreeGroup.reduce.cons {α : Type u} {L : List (α × Bool)} [DecidableEq α] (x : α × Bool) :
FreeGroup.reduce (x :: L) = List.casesOn (FreeGroup.reduce L) [x] fun (hd : α × Bool) (tl : List (α × Bool)) => if x.1 = hd.1 x.2 = !hd.2 then tl else x :: hd :: tl

The first theorem that characterises the function reduce: a word reduces to its maximal reduction.

The first theorem that characterises the function reduce: a word reduces to its maximal reduction.

theorem FreeAddGroup.reduce.not {α : Type u} [DecidableEq α] {p : Prop} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {x : α} {b : Bool} :
FreeAddGroup.reduce L₁ = L₂ ++ (x, b) :: (x, !b) :: L₃p
theorem FreeGroup.reduce.not {α : Type u} [DecidableEq α] {p : Prop} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} {x : α} {b : Bool} :
FreeGroup.reduce L₁ = L₂ ++ (x, b) :: (x, !b) :: L₃p
theorem FreeAddGroup.reduce.min {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.Red (FreeAddGroup.reduce L₁) L₂) :

The second theorem that characterises the function reduce: the maximal reduction of a word only reduces to itself.

theorem FreeGroup.reduce.min {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red (FreeGroup.reduce L₁) L₂) :

The second theorem that characterises the function reduce: the maximal reduction of a word only reduces to itself.

@[simp]

reduce is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the maximal reduction of the word.

@[simp]

reduce is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the maximal reduction of the word.

theorem FreeAddGroup.reduce.Step.eq {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.Red.Step L₁ L₂) :
theorem FreeGroup.reduce.Step.eq {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red.Step L₁ L₂) :
theorem FreeAddGroup.reduce.eq_of_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.Red L₁ L₂) :

If a word reduces to another word, then they have a common maximal reduction.

theorem FreeGroup.reduce.eq_of_red {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red L₁ L₂) :

If a word reduces to another word, then they have a common maximal reduction.

theorem FreeGroup.red.reduce_eq {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red L₁ L₂) :

Alias of FreeGroup.reduce.eq_of_red.


If a word reduces to another word, then they have a common maximal reduction.

theorem FreeGroup.freeAddGroup.red.reduce_eq {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.Red L₁ L₂) :

Alias of FreeAddGroup.reduce.eq_of_red.


If a word reduces to another word, then they have a common maximal reduction.

theorem FreeAddGroup.Red.reduce_right {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (h : FreeAddGroup.Red L₁ L₂) :
theorem FreeGroup.Red.reduce_right {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (h : FreeGroup.Red L₁ L₂) :
theorem FreeAddGroup.Red.reduce_left {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (h : FreeAddGroup.Red L₁ L₂) :
theorem FreeGroup.Red.reduce_left {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (h : FreeGroup.Red L₁ L₂) :
theorem FreeAddGroup.reduce.sound {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.mk L₁ = FreeAddGroup.mk L₂) :

If two words correspond to the same element in the additive free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.

theorem FreeGroup.reduce.sound {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.mk L₁ = FreeGroup.mk L₂) :

If two words correspond to the same element in the free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.

theorem FreeAddGroup.reduce.exact {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.reduce L₁ = FreeAddGroup.reduce L₂) :

If two words have a common maximal reduction, then they correspond to the same element in the additive free group.

theorem FreeGroup.reduce.exact {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.reduce L₁ = FreeGroup.reduce L₂) :

If two words have a common maximal reduction, then they correspond to the same element in the free group.

A word and its maximal reduction correspond to the same element of the additive free group.

A word and its maximal reduction correspond to the same element of the free group.

theorem FreeAddGroup.reduce.rev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeAddGroup.Red L₁ L₂) :

If words w₁ w₂ are such that w₁ reduces to w₂, then w₂ reduces to the maximal reduction of w₁.

theorem FreeGroup.reduce.rev {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red L₁ L₂) :

If words w₁ w₂ are such that w₁ reduces to w₂, then w₂ reduces to the maximal reduction of w₁.

The function that sends an element of the additive free group to its maximal reduction.

Equations
  • FreeAddGroup.toWord = Quot.lift FreeAddGroup.reduce
def FreeGroup.toWord {α : Type u} [DecidableEq α] :
FreeGroup αList (α × Bool)

The function that sends an element of the free group to its maximal reduction.

Equations
theorem FreeAddGroup.mk_toWord {α : Type u} [DecidableEq α] {x : FreeAddGroup α} :
FreeAddGroup.mk x.toWord = x
theorem FreeGroup.mk_toWord {α : Type u} [DecidableEq α] {x : FreeGroup α} :
FreeGroup.mk x.toWord = x
theorem FreeAddGroup.toWord_injective {α : Type u} [DecidableEq α] :
Function.Injective FreeAddGroup.toWord
@[simp]
theorem FreeAddGroup.toWord_inj {α : Type u} [DecidableEq α] {x : FreeAddGroup α} {y : FreeAddGroup α} :
x.toWord = y.toWord x = y
@[simp]
theorem FreeGroup.toWord_inj {α : Type u} [DecidableEq α] {x : FreeGroup α} {y : FreeGroup α} :
x.toWord = y.toWord x = y
@[simp]
theorem FreeAddGroup.toWord_mk {α : Type u} {L₁ : List (α × Bool)} [DecidableEq α] :
@[simp]
theorem FreeGroup.toWord_mk {α : Type u} {L₁ : List (α × Bool)} [DecidableEq α] :
(FreeGroup.mk L₁).toWord = FreeGroup.reduce L₁
@[simp]
theorem FreeAddGroup.reduce_toWord {α : Type u} [DecidableEq α] (x : FreeAddGroup α) :
FreeAddGroup.reduce x.toWord = x.toWord
@[simp]
theorem FreeGroup.reduce_toWord {α : Type u} [DecidableEq α] (x : FreeGroup α) :
FreeGroup.reduce x.toWord = x.toWord
@[simp]
@[simp]
theorem FreeAddGroup.toWord_eq_nil_iff {α : Type u} [DecidableEq α] {x : FreeAddGroup α} :
x.toWord = [] x = 0
@[simp]
theorem FreeGroup.toWord_eq_nil_iff {α : Type u} [DecidableEq α] {x : FreeGroup α} :
x.toWord = [] x = 1
theorem FreeAddGroup.toWord_neg {α : Type u} [DecidableEq α] {x : FreeAddGroup α} :
(-x).toWord = FreeAddGroup.negRev x.toWord
theorem FreeGroup.toWord_inv {α : Type u} [DecidableEq α] {x : FreeGroup α} :
x⁻¹.toWord = FreeGroup.invRev x.toWord
def FreeAddGroup.reduce.churchRosser {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} [DecidableEq α] (H12 : FreeAddGroup.Red L₁ L₂) (H13 : FreeAddGroup.Red L₁ L₃) :
{ L₄ : List (α × Bool) // FreeAddGroup.Red L₂ L₄ FreeAddGroup.Red L₃ L₄ }

Constructive Church-Rosser theorem (compare church_rosser).

Equations
theorem FreeAddGroup.reduce.churchRosser.proof_1 {α : Type u_1} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} [DecidableEq α] (H12 : FreeAddGroup.Red L₁ L₂) (H13 : FreeAddGroup.Red L₁ L₃) :
def FreeGroup.reduce.churchRosser {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} {L₃ : List (α × Bool)} [DecidableEq α] (H12 : FreeGroup.Red L₁ L₂) (H13 : FreeGroup.Red L₁ L₃) :
{ L₄ : List (α × Bool) // FreeGroup.Red L₂ L₄ FreeGroup.Red L₃ L₄ }

Constructive Church-Rosser theorem (compare church_rosser).

Equations
Equations
  • FreeAddGroup.instDecidableEq = .decidableEq
Equations
  • FreeGroup.instDecidableEq = .decidableEq
instance FreeGroup.Red.decidableRel {α : Type u} [DecidableEq α] :
DecidableRel FreeGroup.Red
Equations
def FreeGroup.Red.enum {α : Type u} [DecidableEq α] (L₁ : List (α × Bool)) :
List (List (α × Bool))

A list containing every word that w₁ reduces to.

Equations
theorem FreeGroup.Red.enum.sound {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : L₂ List.filter (fun (b : List (α × Bool)) => decide (FreeGroup.Red L₁ b)) L₁.sublists) :
FreeGroup.Red L₁ L₂
theorem FreeGroup.Red.enum.complete {α : Type u} {L₁ : List (α × Bool)} {L₂ : List (α × Bool)} [DecidableEq α] (H : FreeGroup.Red L₁ L₂) :
instance FreeGroup.instFintypeSubtypeListProdBoolRed {α : Type u} {L₁ : List (α × Bool)} [DecidableEq α] :
Fintype { L₂ : List (α × Bool) // FreeGroup.Red L₁ L₂ }
Equations
def FreeAddGroup.norm {α : Type u} [DecidableEq α] (x : FreeAddGroup α) :

The length of reduced words provides a norm on an additive free group.

Equations
  • x.norm = x.toWord.length
def FreeGroup.norm {α : Type u} [DecidableEq α] (x : FreeGroup α) :

The length of reduced words provides a norm on a free group.

Equations
  • x.norm = x.toWord.length
@[simp]
theorem FreeAddGroup.norm_neg_eq {α : Type u} [DecidableEq α] {x : FreeAddGroup α} :
(-x).norm = x.norm
@[simp]
theorem FreeGroup.norm_inv_eq {α : Type u} [DecidableEq α] {x : FreeGroup α} :
x⁻¹.norm = x.norm
@[simp]
theorem FreeAddGroup.norm_eq_zero {α : Type u} [DecidableEq α] {x : FreeAddGroup α} :
x.norm = 0 x = 0
@[simp]
theorem FreeGroup.norm_eq_zero {α : Type u} [DecidableEq α] {x : FreeGroup α} :
x.norm = 0 x = 1
@[simp]
theorem FreeAddGroup.norm_mk_le {α : Type u} {L₁ : List (α × Bool)} [DecidableEq α] :
(FreeAddGroup.mk L₁).norm L₁.length
theorem FreeGroup.norm_mk_le {α : Type u} {L₁ : List (α × Bool)} [DecidableEq α] :
(FreeGroup.mk L₁).norm L₁.length
theorem FreeAddGroup.norm_add_le {α : Type u} [DecidableEq α] (x : FreeAddGroup α) (y : FreeAddGroup α) :
(x + y).norm x.norm + y.norm
theorem FreeGroup.norm_mul_le {α : Type u} [DecidableEq α] (x : FreeGroup α) (y : FreeGroup α) :
(x * y).norm x.norm + y.norm