Documentation

Marginis.PaulyFouche2017

How constructive is constructing measures? #

Pauly and Fouche #

In the proof of Example 15 they write: let d be the restriction of the usual metric on Cantor space.

Here we specify what we think they meant by the usual metric on Cantor space.

We also include the Lebesgue measure on Cantor space as a Hausdorff measure, which is also relevant to their paper as "Particular attention is paid to Frostman measures on sets with positive Hausdorff dimension".

In theorem measure_univ_prototype we give a prototype of the argument from compactness that the Hausdorff measure of the whole space is 1.

noncomputable def μ :
Equations
Instances For
    theorem dist_one {t : Bool} {f : Bool} (h : t 0 f 0) :
    1 = dist t f

    If two members of Cantor space differ at 0 then their distance is 1.

    theorem dist_of_diff {k : } {t : Bool} {f : Bool} (h : t k f k) :
    (1 / 2) ^ k dist t f

    If two members of Cantor space differ at k then their distance is at least 2⁻ᵏ.

    def fa :
    Bool
    Equations
    Instances For
      def tr :
      Bool
      Equations
      Instances For
        theorem dist_tf :
        theorem dist_bound (x : Bool) (y : Bool) :
        dist x y 1
        noncomputable def d :
        (Bool)(Bool)
        Equations
        Instances For
          noncomputable def de (x : Bool) (y : Bool) :
          Equations
          Instances For
            noncomputable def F (t : Bool) :
            Equations
            Instances For
              noncomputable def Fe (t : Bool) :
              Equations
              Instances For
                noncomputable def F_on (S : Set (Bool)) (t : Bool) :
                Equations
                Instances For
                  theorem de_d {x : Bool} {y : Bool} :
                  (de x y).toReal = d x y
                  theorem ENNReal_div_pow {k : } :
                  ((1 / 2) ^ k).toNNReal = (1 / 2) ^ k
                  theorem edist_of_diff {k : } {t : Bool} {f : Bool} (h : t k f k) :
                  (1 / 2) ^ k edist t f
                  theorem sup_dist_bound (x : Bool) :
                  F x 1
                  theorem edist_bound (x : Bool) (z : Bool) :
                  edist x z 1
                  theorem sup_edist_bound' (z : Bool) :
                  ⨆ (i : Bool), edist i z 1
                  theorem sup_edist_lower_bound'1 {k : } (S : Set (Bool)) (t : Bool) (f : Bool) (h₀ : t k f k) (h₁ : t S f S) :
                  (1 / 2) ^ k xS, yS, edist x y
                  theorem sup_edist_lower_bound' (S : Set (Bool)) (t : Bool) (f : Bool) (h₀ : t 0 f 0) (h₁ : t S f S) :
                  1 xS, yS, de x y
                  theorem sup_dist_lower_bound :
                  1 xSet.univ, ySet.univ, d x y
                  theorem sup_sup_dist_eq :
                  xSet.univ, ySet.univ, dist x y = 1
                  theorem sub_edist_ne_top (i : Bool) :
                  (⨆ (y : Bool), edist y) i
                  noncomputable def toReal_sup (x : Bool) :
                  Equations
                  Instances For
                    noncomputable def sup_toReal (x : Bool) :
                    Equations
                    Instances For
                      theorem toReal_sup_eq_sup_toReal₀ (x : Bool) :
                      (⨆ ySet.univ, edist x y).toReal = ySet.univ, (edist x y).toReal
                      theorem fubini :
                      ⨆ (x : Bool), ⨆ (y : Bool), edist x y = ⨆ (y : Bool), ⨆ (x : Bool), edist x y
                      theorem fubini_toReal :
                      ⨆ (x : Bool), (⨆ (y : Bool), edist x y).toReal = ⨆ (y : Bool), (⨆ (x : Bool), edist x y).toReal
                      theorem toReal_sup_sup_eq_sup_toReal_sup :
                      (iSup (⨆ (y : Bool), edist y)).toReal = ⨆ (i : Bool), ((⨆ (y : Bool), edist y) i).toReal
                      theorem toReal_sup_sup_eq_sup_toReal_sup' :
                      (⨆ xSet.univ, ySet.univ, edist x y).toReal = xSet.univ, toReal_sup x
                      theorem diameter_one :
                      Metric.diam Set.univ = 1
                      theorem e_diameter_one :
                      EMetric.diam Set.univ = 1
                      theorem diam_one (S : Set (Bool)) (hS : ∃ (x : Bool) (y : Bool), x S y S x 0 = true y 0 = false) :
                      theorem half_nonneg {k : } :
                      0 (1 / 2) ^ k
                      theorem ENNReal_simp {k : } :
                      ((1 / 2) ^ k) = (1 / 2) ^ k
                      theorem NNReal_proof {k : } {half_nonneg_k : 0 (1 / 2) ^ k} :
                      (1 / 2) ^ k, half_nonneg_k = ((1 / 2) ^ k)
                      theorem ENNReal_mess (k : ) :
                      (1 / 2) ^ k, = (1 / 2) ^ k
                      def ft :
                      Bool
                      Equations
                      Instances For
                        def ff :
                        Bool
                        Equations
                        Instances For
                          def tt (n : ) :
                          Equations
                          Instances For
                            def tf (n : ) :
                            Equations
                            Instances For
                              theorem edist_half {b : Bool} :
                              x{x : Bool | x 0 = b}, y{x : Bool | x 0 = b}, edist x y 1 / 2
                              theorem one_or_other {S : Set (Bool)} {T : Set (Bool)} (hS : ¬∃ (x : Bool) (y : Bool), x S y S x 0 = true y 0 = false) (hT : ¬∃ (x : Bool) (y : Bool), x T y T x 0 = true y 0 = false) (h₀ : tr S tr T) (h₁ : fa S fa T) :
                              tr S trT
                              theorem four_sets_and_disjointness {S : Set (Bool)} {T : Set (Bool)} (h : Set.univ S T) (hT : ¬∃ (x : Bool) (y : Bool), x T y T x 0 = true y 0 = false) (hl₀ : S {x : Bool | x 0 = false}) :
                              S = {x : Bool | x 0 = false} T = {x : Bool | x 0 = true}
                              theorem measure_univ_prototype (S : Set (Bool)) (T : Set (Bool)) (h : Set.univ S T) :