Documentation

Marginis.PaulyFouche2017

How constructive is constructing measures? #

Pauly and Fouche

In the proof of Example 15 they write: let d be the restriction of the usual metric on Cantor space.

Here we specify what we think they meant by the usual metric on Cantor space.

We also include the Lebesgue measure on Cantor space as a Hausdorff measure, which is also relevant to their paper as "Particular attention is paid to Frostman measures on sets with positive Hausdorff dimension".

In theorem measure_univ_prototype we give a prototype of the argument from compactness that the Hausdorff measure of the whole space is 1.

theorem dist_one {t : Bool} {f : Bool} (h : t 0 f 0) :
1 = dist t f

If two members of Cantor space differ at 0 then their distance is 1.

theorem dist_of_diff {k : } {t : Bool} {f : Bool} (h : t k f k) :
(1 / 2) ^ k dist t f

If two members of Cantor space differ at k then their distance is at least 2⁻ᵏ.

def fa :
Bool
Equations
def tr :
Bool
Equations
theorem dist_tf :
theorem dist_bound (x : Bool) (y : Bool) :
dist x y 1
noncomputable def d :
(Bool)(Bool)
Equations
noncomputable def de (x : Bool) (y : Bool) :
Equations
noncomputable def F (t : Bool) :
Equations
noncomputable def Fe (t : Bool) :
Equations
noncomputable def F_on (S : Set (Bool)) (t : Bool) :
Equations
theorem de_d {x : Bool} {y : Bool} :
(de x y).toReal = d x y
theorem ENNReal_div_pow {k : } :
((1 / 2) ^ k).toNNReal = (1 / 2) ^ k
theorem edist_of_diff {k : } {t : Bool} {f : Bool} (h : t k f k) :
(1 / 2) ^ k edist t f
theorem sup_dist_bound (x : Bool) :
F x 1
theorem edist_bound (x : Bool) (z : Bool) :
edist x z 1
theorem sup_edist_bound' (z : Bool) :
⨆ (i : Bool), edist i z 1
theorem sup_edist_lower_bound'1 {k : } (S : Set (Bool)) (t : Bool) (f : Bool) (h₀ : t k f k) (h₁ : t S f S) :
(1 / 2) ^ k xS, yS, edist x y
theorem sup_edist_lower_bound' (S : Set (Bool)) (t : Bool) (f : Bool) (h₀ : t 0 f 0) (h₁ : t S f S) :
1 xS, yS, de x y
theorem sup_dist_lower_bound :
1 xSet.univ, ySet.univ, d x y
theorem sup_sup_dist_eq :
xSet.univ, ySet.univ, dist x y = 1
theorem sub_edist_ne_top (i : Bool) :
(⨆ (y : Bool), edist y) i
noncomputable def toReal_sup (x : Bool) :
Equations
noncomputable def sup_toReal (x : Bool) :
Equations
theorem toReal_sup_eq_sup_toReal₀ (x : Bool) :
(⨆ ySet.univ, edist x y).toReal = ySet.univ, (edist x y).toReal
theorem fubini :
⨆ (x : Bool), ⨆ (y : Bool), edist x y = ⨆ (y : Bool), ⨆ (x : Bool), edist x y
theorem fubini_toReal :
⨆ (x : Bool), (⨆ (y : Bool), edist x y).toReal = ⨆ (y : Bool), (⨆ (x : Bool), edist x y).toReal
theorem toReal_sup_sup_eq_sup_toReal_sup :
(iSup (⨆ (y : Bool), edist y)).toReal = ⨆ (i : Bool), ((⨆ (y : Bool), edist y) i).toReal
theorem toReal_sup_sup_eq_sup_toReal_sup' :
(⨆ xSet.univ, ySet.univ, edist x y).toReal = xSet.univ, toReal_sup x
theorem diameter_one :
Metric.diam Set.univ = 1
theorem e_diameter_one :
EMetric.diam Set.univ = 1
theorem diam_one (S : Set (Bool)) (hS : ∃ (x : Bool) (y : Bool), x S y S x 0 = true y 0 = false) :
theorem half_nonneg {k : } :
0 (1 / 2) ^ k
theorem ENNReal_simp {k : } :
((1 / 2) ^ k) = (1 / 2) ^ k
theorem NNReal_proof {k : } {half_nonneg_k : 0 (1 / 2) ^ k} :
(1 / 2) ^ k, half_nonneg_k = ((1 / 2) ^ k)
theorem ENNReal_mess (k : ) :
(1 / 2) ^ k, = (1 / 2) ^ k
def ft :
Bool
Equations
def ff :
Bool
Equations
def tt (n : ) :
Equations
def tf (n : ) :
Equations
theorem edist_half {b : Bool} :
x{x : Bool | x 0 = b}, y{x : Bool | x 0 = b}, edist x y 1 / 2
theorem one_or_other {S : Set (Bool)} {T : Set (Bool)} (hS : ¬∃ (x : Bool) (y : Bool), x S y S x 0 = true y 0 = false) (hT : ¬∃ (x : Bool) (y : Bool), x T y T x 0 = true y 0 = false) (h₀ : tr S tr T) (h₁ : fa S fa T) :
tr S trT
theorem four_sets_and_disjointness {S : Set (Bool)} {T : Set (Bool)} (h : Set.univ S T) (hT : ¬∃ (x : Bool) (y : Bool), x T y T x 0 = true y 0 = false) (hl₀ : S {x : Bool | x 0 = false}) :
S = {x : Bool | x 0 = false} T = {x : Bool | x 0 = true}
theorem measure_univ_prototype (S : Set (Bool)) (T : Set (Bool)) (h : Set.univ S T) :