Documentation
Marginis
.
HirstMiller2012
Search
Google site search
return to top
source
Imports
Init
Mathlib.Topology.MetricSpace.Basic
Mathlib.Topology.MetricSpace.Bounded
Mathlib.Topology.MetricSpace.Cauchy
Mathlib.Topology.Order.Bornology
Mathlib.Analysis.SpecialFunctions.Pow.Real
Imported by
Marginis
bounded_icc
subset_bounded_01
subset_bounded_X
subset_bounded_A
compact_A
finite_subcover_A
instProperSpaceReal_marginis
source
theorem
bounded_icc
{r_c :
ℝ
}
:
Bornology.IsBounded
{
r
:
ℝ
|
0
≤
r
∧
r
≤
r_c
}
source
theorem
subset_bounded_01
:
Bornology.IsBounded
(
Set.Icc
0
1
)
source
theorem
subset_bounded_X
{X :
Set
ℝ
}
(hX :
X
⊆
Set.Icc
0
1
)
:
Bornology.IsBounded
X
source
theorem
subset_bounded_A
{X :
Set
ℝ
}
{A :
Set
ℝ
}
(hX :
X
⊆
Set.Icc
0
1
)
(hA :
A
⊆
X
)
:
Bornology.IsBounded
A
source
theorem
compact_A
{A :
Set
ℝ
}
{X :
Set
ℝ
}
(hX :
X
⊆
Set.Icc
0
1
)
(hA :
A
⊆
X
)
(hClosed :
IsClosed
A
)
:
IsCompact
A
source
theorem
finite_subcover_A
{I :
Type
u_1}
{A :
Set
ℝ
}
{X :
Set
ℝ
}
(hX :
X
⊆
Set.Icc
0
1
)
(hA :
A
⊆
X
)
(hClosed :
IsClosed
A
)
(U :
I
→
Set
ℝ
)
(hOpen :
∀ (
i
:
I
),
IsOpen
(
U
i
)
)
(hCover :
A
⊆
⋃ (
i
:
I
),
U
i
)
:
∃ (
J
:
Finset
I
),
A
⊆
⋃
i
∈
J
,
U
i
source
instance
instProperSpaceReal_marginis
:
ProperSpace
ℝ
Equations
instProperSpaceReal_marginis
=
⋯