Documentation

KolmogorovExtension4.ClosedProj

Results about projections #

theorem continuous_cast {α : Type u} {β : Type u} [tα : TopologicalSpace α] [tβ : TopologicalSpace β] (h : α = β) (ht : HEq ) :
Continuous fun (x : α) => cast h x
theorem measurable_proj {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (I : Set ι) :
Measurable fun (f : (i : ι) → α i) (i : I) => f i
theorem measurable_proj' {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (I : Finset ι) :
Measurable fun (f : (i : ι) → α i) (i : { x : ι // x I }) => f i
theorem measurable_proj₂ {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (I : Set ι) (J : Set ι) (hIJ : J I) :
Measurable fun (f : (i : I) → α i) (i : J) => f i,
theorem measurable_proj₂' {ι : Type u_1} {α : ιType u_2} [(i : ι) → MeasurableSpace (α i)] (I : Finset ι) (J : Finset ι) (hIJ : J I) :
Measurable fun (f : (i : { x : ι // x I }) → α i) (i : { x : ι // x J }) => f i,
theorem continuous_proj {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] (I : Set ι) :
Continuous fun (f : (i : ι) → α i) (i : I) => f i
theorem continuous_proj₂ {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] (I : Set ι) (J : Set ι) (hIJ : J I) :
Continuous fun (f : (i : I) → α i) (i : J) => f i,
theorem continuous_proj₂' {ι : Type u_1} {α : ιType u_2} [(i : ι) → TopologicalSpace (α i)] (I : Finset ι) (J : Finset ι) (hIJ : J I) :
Continuous fun (f : (i : { x : ι // x I }) → α i) (i : { x : ι // x J }) => f i,

We show that the projection of a compact closed set s in a product Π i, α i onto one of the spaces α j is a closed set.

The idea of the proof is to use isClosedMap_snd_of_compactSpace, which is the fact that if X is a compact topological space, then Prod.snd : X × Y → Y is a closed map. In our application, Y is α j and X is the projection of s to the product over all indexes that are not j. We define projCompl α j for that projection map.

In order to be able to use the lemma isClosedMap_snd_of_compactSpace, we have to make those X and Y appear explicitly. We remark that s belongs to the set projCompl α j ⁻¹' (projCompl α j '' s), and we build an homeomorphism projCompl α j ⁻¹' (projCompl α j '' s) ≃ₜ projCompl α j '' s × α j. projCompl α j is a compact space since s is compact, and the lemma applies.

def projCompl {ι : Type u_3} (α : ιType u_5) (i : ι) (x : (i : ι) → α i) (j : { k : ι // k i }) :
α j

Given a dependent function of i, specialize it as a function on the complement of {i}.

Equations
Instances For
    theorem continuous_projCompl {ι : Type u_3} {α : ιType u_4} {i : ι} [(i : ι) → TopologicalSpace (α i)] :
    noncomputable def fromXProd {ι : Type u_3} (α : ιType u_5) (i : ι) (s : Set ((j : ι) → α j)) (p : (projCompl α i '' s) × α i) (j : ι) :
    α j

    Given a set of dependent functions, construct a function on a product space separating out the coordinate i from the other ones.

    Equations
    • fromXProd α i s p j = if h : j = i then cast p.2 else p.1 j, h
    Instances For
      @[simp]
      theorem fromXProd_same {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} (p : (projCompl α i '' s) × α i) :
      fromXProd α i s p i = p.2
      @[simp]
      theorem projCompl_fromXProd {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} (p : (projCompl α i '' s) × α i) :
      projCompl α i (fromXProd α i s p) = p.1
      theorem continuous_fromXProd {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} [(i : ι) → TopologicalSpace (α i)] :
      theorem fromXProd_mem_XY {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} (p : (projCompl α i '' s) × α i) :
      fromXProd α i s p projCompl α i ⁻¹' (projCompl α i '' s)
      @[simp]
      theorem fromXProd_projCompl {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} (x : (projCompl α i ⁻¹' (projCompl α i '' s))) :
      fromXProd α i s (projCompl α i x, , x i) = x
      noncomputable def XYEquiv {ι : Type u_3} (α : ιType u_5) [(i : ι) → TopologicalSpace (α i)] (i : ι) (s : Set ((j : ι) → α j)) :
      (projCompl α i ⁻¹' (projCompl α i '' s)) ≃ₜ (projCompl α i '' s) × α i

      Homeomorphism between the set of functions that concide with a given set of functions away from a given i, and dependent functions away from i times any value on i.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem preimage_snd_xyEquiv {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} {i : ι} [(i : ι) → TopologicalSpace (α i)] :
        Prod.snd '' ((XYEquiv α i s) '' ((fun (x : (projCompl α i ⁻¹' (projCompl α i '' s))) => x) ⁻¹' s)) = (fun (x : (i : ι) → α i) => x i) '' s
        theorem isClosed_proj {ι : Type u_3} {α : ιType u_4} {s : Set ((i : ι) → α i)} [(i : ι) → TopologicalSpace (α i)] (hs_compact : IsCompact s) (hs_closed : IsClosed s) (i : ι) :
        IsClosed ((fun (x : (i : ι) → α i) => x i) '' s)

        The projection of a compact closed set onto a coordinate is closed.