Documentation

Wollic25.Basic

Subdirect irreducibility and simplicity of lattices #

We prove that there exists a lattice that is subdirectly irreducible but not simple.

0 /

| 4 3 | | 2 \ / 1

def congruence {L : Type u_1} (l : Lattice L) (R : LLProp) :

R is a congruence of the lattice L if it is an equivalence relation that preserves and .

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Fin.lcm.proof {n : } {a b : Fin n} (h : ¬(↑a).lcm b < n) :
    0 < n
    theorem Fin.gcd.proof {n : } {a b : Fin n} :
    (↑a).gcd b < n
    def Fin.lcm {n : } (a b : Fin n) :
    Fin n

    Fin.lcm on Fin n is 0 if Nat.lcm is not in Fin n.

    Equations
    Instances For
      def Fin.gcd {n : } (a b : Fin n) :
      Fin n

      The gcd on ℕ works without modification on Fin n.

      Equations
      Instances For
        theorem D.sup_le (n : ) (a b c : Fin n) (h₀ : (↑a).lcm b c) (g₀ : c 0) :
        (↑a).lcm b c
        noncomputable def D (n : ) :

        Fin n as a partial divisor lattice.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def SubdirectlyIrreducible {A : Type u_1} (l : Lattice A) :

          A lattice L is subdirectly irreducible if it contains two elements a, b that are identified by any nontrivial congruence.

          (We also allow the trivial case |L| ≤ 1.)

          Equations
          Instances For
            def Simple {A : Type u_1} (l : Lattice A) :

            A lattice is simple if it has no nontrivial congruences.

            Equations
            Instances For
              def principalEquiv {A : Type u_1} (x y : A) (hxy : x y) :
              IsEquiv A fun (a b : A) => a = b {a, b} = {x, y}

              The equivalence relation that identifies two elements x ≠ y. (The assumption x ≠ y is not strictly speaking needed.)

              Equations
              • =
              Instances For
                theorem preserve_sup_of_indiscernible {A : Type u_1} (l : Lattice A) (x y : A) (hxy' : zSet.Icc x y, w₀Set.Icc x y, w₁Set.Icc x y, (w₀ z w₁ z) (z w₀ z w₁)) (x₀ x₁ y₀ y₁ : A) :
                (fun (a b : A) => a = b {a, b} Set.Icc x y) x₀ x₁(fun (a b : A) => a = b {a, b} Set.Icc x y) y₀ y₁(fun (a b : A) => a = b {a, b} Set.Icc x y) (SemilatticeSup.sup x₀ y₀) (SemilatticeSup.sup x₁ y₁)

                An interval [x,y] is indiscernible if its elements u agree on whether they are above or below a given element z ∉ [x,y]. The equivalence relation formed by collapsing such an interval preserves .

                theorem sdi_of_simple {A : Type u_1} (l : Lattice A) (h : Simple l) :

                Simple implies subdirectly irreducible. ((D 5) is an example of the failure of the converse.) M₃ is simple.

                theorem N₅omega {u : Fin 5} {c₀ c₁ : } (hc₀ : u = 2 * c₀) (hc₁ : 4 = u * c₁) :
                u = 2 u = 4
                theorem N₅helper :
                {u : Fin 5 | 2 u u 4} = {2, 4}
                theorem D₅_congr_sup (x₀ x₁ y₀ y₁ : Fin 5) :
                (fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) x₀ x₁(fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) y₀ y₁(fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) (SemilatticeSup.sup x₀ y₀) (SemilatticeSup.sup x₁ y₁)
                theorem D₅_congr_inf (x₀ x₁ y₀ y₁ : Fin 5) :
                (fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) x₀ x₁(fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) y₀ y₁(fun (a b : Fin 5) => a = b {a, b} {x : Fin 5 | 2 x x 4}) (Lattice.inf x₀ y₀) (Lattice.inf x₁ y₁)

                The principal equivalence relation with block {2,4} preserves in (D 5).

                theorem N₅indiscernibleInterval (z : Fin 5) :
                z{u : Fin 5 | 2 u u 4}w₀{u : Fin 5 | 2 u u 4}, w₁{u : Fin 5 | 2 u u 4}, (w₀ z w₁ z) (z w₀ z w₁)

                The interval [2,4] in (D 5) is indiscernible.

                The lattice (D 5) is not simple.

                theorem ofIcc {A : Type u_1} {l : Lattice A} {R : AAProp} (hR₀ : congruence l R) {a b c d : A} (o₀ : a b) (o₁ : b c) (o₂ : c d) (h : R a d) :
                R b c

                If R is a congruence of a lattice L then its blocks are convex: if a ≤ b ≤ c ≤ d and R(a,d) then R(b,c).

                theorem of₃₀D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 3 0) :
                R 2 4

                Any congruence of (D 5) with 3∼0 makes 2∼4.

                theorem of₃₂D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 3 2) :
                R 2 4

                Any congruence of (D 5) with 3∼2 makes 2∼4.

                theorem of₃₄D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 3 4) :
                R 2 4
                theorem of₃₁D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 3 1) :
                R 2 4

                Any congruence of (D 5) with 3∼1 makes 2∼4.

                theorem of₂₁D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 2 1) :
                R 2 4

                Any congruence of (D 5) with 2∼1 makes 2∼4.

                theorem of₄₀D₅ {R : Fin 5Fin 5Prop} (hR₀ : congruence (D 5) R) (H : R 4 0) :
                R 2 4

                Any congruence of (D 5) with 4∼0 makes 2∼4.

                theorem of₃D₅ (R : Fin 5Fin 5Prop) (hR₀ : congruence (D 5) R) (H : ∃ (i : Fin 5), i 3 R 3 i) :
                R 2 4

                Any congruence of (D 5) with 3 equivalent to something else makes 2∼4.

                The lattice (D 5) is subdirectly irreducible.

                There exists a lattice that is subdirectly irreducible but not simple, namely N₅.