Lemmas about filters and ordered rings. #
theorem
Filter.EventuallyLE.mul_le_mul
{α : Type u}
{β : Type v}
[MulZeroClass β]
[PartialOrder β]
[PosMulMono β]
[MulPosMono β]
{l : Filter α}
{f₁ : α → β}
{f₂ : α → β}
{g₁ : α → β}
{g₂ : α → β}
(hf : f₁ ≤ᶠ[l] f₂)
(hg : g₁ ≤ᶠ[l] g₂)
(hg₀ : 0 ≤ᶠ[l] g₁)
(hf₀ : 0 ≤ᶠ[l] f₂)
:
theorem
Filter.EventuallyLE.add_le_add
{α : Type u}
{β : Type v}
[Add β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 + x2) fun (x1 x2 : β) => x1 ≤ x2]
{l : Filter α}
{f₁ : α → β}
{f₂ : α → β}
{g₁ : α → β}
{g₂ : α → β}
(hf : f₁ ≤ᶠ[l] f₂)
(hg : g₁ ≤ᶠ[l] g₂)
:
theorem
Filter.EventuallyLE.mul_le_mul'
{α : Type u}
{β : Type v}
[Mul β]
[Preorder β]
[CovariantClass β β (fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
[CovariantClass β β (Function.swap fun (x1 x2 : β) => x1 * x2) fun (x1 x2 : β) => x1 ≤ x2]
{l : Filter α}
{f₁ : α → β}
{f₂ : α → β}
{g₁ : α → β}
{g₂ : α → β}
(hf : f₁ ≤ᶠ[l] f₂)
(hg : g₁ ≤ᶠ[l] g₂)
:
instance
Filter.Germ.instOrderedAddCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedAddCommGroup β]
:
OrderedAddCommGroup (l.Germ β)
Equations
- Filter.Germ.instOrderedAddCommGroup = OrderedAddCommGroup.mk ⋯
theorem
Filter.Germ.instOrderedAddCommGroup.proof_2
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(a : l.Germ β)
:
SubNegMonoid.zsmul 0 a = 0
theorem
Filter.Germ.instOrderedAddCommGroup.proof_1
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(a : l.Germ β)
(b : l.Germ β)
:
theorem
Filter.Germ.instOrderedAddCommGroup.proof_4
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(n : ℕ)
(a : l.Germ β)
:
SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑n.succ) a
theorem
Filter.Germ.instOrderedAddCommGroup.proof_6
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(a : l.Germ β)
(b : l.Germ β)
:
theorem
Filter.Germ.instOrderedAddCommGroup.proof_3
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(n : ℕ)
(a : l.Germ β)
:
SubNegMonoid.zsmul (Int.ofNat n.succ) a = SubNegMonoid.zsmul (Int.ofNat n) a + a
theorem
Filter.Germ.instOrderedAddCommGroup.proof_5
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(a : l.Germ β)
:
theorem
Filter.Germ.instOrderedAddCommGroup.proof_7
{α : Type u_1}
{β : Type u_2}
{l : Filter α}
[OrderedAddCommGroup β]
(a : l.Germ β)
(b : l.Germ β)
:
instance
Filter.Germ.instOrderedCommGroup
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommGroup β]
:
OrderedCommGroup (l.Germ β)
Equations
- Filter.Germ.instOrderedCommGroup = OrderedCommGroup.mk ⋯
instance
Filter.Germ.instOrderedSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedSemiring β]
:
OrderedSemiring (l.Germ β)
Equations
- Filter.Germ.instOrderedSemiring = OrderedSemiring.mk ⋯ ⋯ ⋯ ⋯
instance
Filter.Germ.instOrderedCommSemiring
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommSemiring β]
:
OrderedCommSemiring (l.Germ β)
Equations
- Filter.Germ.instOrderedCommSemiring = OrderedCommSemiring.mk ⋯
instance
Filter.Germ.instOrderedRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedRing β]
:
OrderedRing (l.Germ β)
Equations
- Filter.Germ.instOrderedRing = OrderedRing.mk ⋯ ⋯ ⋯
instance
Filter.Germ.instOrderedCommRing
{α : Type u}
{β : Type v}
{l : Filter α}
[OrderedCommRing β]
:
OrderedCommRing (l.Germ β)
Equations
- Filter.Germ.instOrderedCommRing = OrderedCommRing.mk ⋯