Documentation

Mathlib.Data.ZMod.Quotient

ZMod n and quotient groups / rings #

This file relates ZMod n to the quotient group ℤ / AddSubgroup.zmultiples (n : ℤ) and to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}.

Main definitions #

Tags #

zmod, quotient group, quotient ring, ideal quotient

modulo multiples of a : ℤ is ZMod a.natAbs.

Equations

modulo the ideal generated by n : ℕ is ZMod n.

Equations

modulo the ideal generated by a : ℤ is ZMod a.natAbs.

Equations
@[simp]
theorem Int.index_zmultiples (a : ) :
(AddSubgroup.zmultiples a).index = a.natAbs
def ZMod.prodEquivPi {ι : Type u_3} [Fintype ι] (a : ι) (coprime : Pairwise fun (i j : ι) => (a i).Coprime (a j)) :
ZMod (∏ i : ι, a i) ≃+* ((i : ι) → ZMod (a i))

The Chinese remainder theorem, elementary version for ZMod. See also Mathlib.Data.ZMod.Basic for versions involving only two numbers.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def AddAction.zmultiplesQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) :

The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod (a +ᵥ ·) b.

Equations
  • One or more equations did not get rendered due to their size.
theorem AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
(AddAction.zmultiplesQuotientStabilizerEquiv a b).symm n = n.cast a,
noncomputable def MulAction.zpowersQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :

The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.

Equations
theorem MulAction.zpowersQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
(MulAction.zpowersQuotientStabilizerEquiv a b).symm n = a, ^ n.cast
noncomputable def MulAction.orbitZPowersEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :
(MulAction.orbit (↥(Subgroup.zpowers a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a x) b)

The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.

Equations
noncomputable def AddAction.orbitZMultiplesEquiv {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) :
(AddAction.orbit (↥(AddSubgroup.zmultiples a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)

The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod (a +ᵥ ·) b.

Equations
theorem AddAction.orbitZMultiplesEquiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
(AddAction.orbitZMultiplesEquiv a b).symm k = k.cast a, +ᵥ b,
theorem MulAction.orbitZPowersEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
(MulAction.orbitZPowersEquiv a b).symm k = a, ^ k.cast b,
@[deprecated AddAction.orbitZMultiplesEquiv_symm_apply]
theorem AddAction.orbit_zmultiples_equiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
(AddAction.orbitZMultiplesEquiv a b).symm k = k.cast a, +ᵥ b,

Alias of AddAction.orbitZMultiplesEquiv_symm_apply.

theorem MulAction.orbitZPowersEquiv_symm_apply' {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ) :
(MulAction.orbitZPowersEquiv a b).symm k = a, ^ k b,
theorem AddAction.orbitZMultiplesEquiv_symm_apply' {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ) :
(AddAction.orbitZMultiplesEquiv a b).symm k = k a, +ᵥ b,
theorem AddAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Fintype (AddAction.orbit (↥(AddSubgroup.zmultiples a)) b)] :
theorem MulAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Fintype (MulAction.orbit (↥(Subgroup.zpowers a)) b)] :
instance AddAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Finite (AddAction.orbit (↥(AddSubgroup.zmultiples a)) b)] :
NeZero (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)
Equations
  • =
instance MulAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Finite (MulAction.orbit (↥(Subgroup.zpowers a)) b)] :
NeZero (Function.minimalPeriod (fun (x : β) => a x) b)
Equations
  • =
@[simp]
theorem Nat.card_zpowers {α : Type u_3} [Group α] (a : α) :

See also Fintype.card_zpowers.

@[simp]
theorem finite_zmultiples {α : Type u_3} [AddGroup α] {a : α} :
@[simp]
theorem finite_zpowers {α : Type u_3} [Group α] {a : α} :
@[simp]
theorem infinite_zmultiples {α : Type u_3} [AddGroup α] {a : α} :
@[simp]
theorem infinite_zpowers {α : Type u_3} [Group α] {a : α} :
(↑(Subgroup.zpowers a)).Infinite ¬IsOfFinOrder a
theorem IsOfFinOrder.finite_zpowers {α : Type u_3} [Group α] {a : α} :
IsOfFinOrder a(↑(Subgroup.zpowers a)).Finite

Alias of the reverse direction of finite_zpowers.

theorem IsOfFinAddOrder.finite_zmultiples {α : Type u_3} [AddGroup α] {a : α} :