Documentation

Mathlib.CategoryTheory.Opposites

Opposite categories #

We provide a category instance on Cᵒᵖ. The morphisms X ⟶ Y are defined to be the morphisms unop Y ⟶ unop X in C.

Here Cᵒᵖ is an irreducible typeclass synonym for C (it is the same one used in the algebra library).

We also provide various mechanisms for constructing opposite morphisms, functors, and natural transformations.

Unfortunately, because we do not have a definitional equality op (op X) = X, there are quite a few variations that are needed in practice.

theorem Quiver.Hom.op_inj {C : Type u₁} [Quiver C] {X : C} {Y : C} :
Function.Injective Quiver.Hom.op
theorem Quiver.Hom.unop_inj {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} :
Function.Injective Quiver.Hom.unop
@[simp]
theorem Quiver.Hom.unop_op {C : Type u₁} [Quiver C] {X : C} {Y : C} (f : X Y) :
f.op.unop = f
@[simp]
@[simp]
theorem Quiver.Hom.op_unop {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.op = f
@[simp]
theorem Quiver.Hom.unop_mk {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
@[simp]
theorem CategoryTheory.op_comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : Y Z} :
@[simp]
theorem CategoryTheory.unopUnop_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
∀ {X Y : Cᵒᵖᵒᵖ} (f : X Y), (CategoryTheory.unopUnop C).map f = f.unop.unop

The functor from the double-opposite of a category to the underlying category.

Equations
@[simp]
theorem CategoryTheory.opOp_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
∀ {X Y : C} (f : X Y), (CategoryTheory.opOp C).map f = f.op.op

The functor from a category to its double-opposite.

Equations

The double opposite category is equivalent to the original.

Equations
  • One or more equations did not get rendered due to their size.

If f is an isomorphism, so is f.op

Equations
  • =

If f.op is an isomorphism f must be too. (This cannot be an instance as it would immediately loop!)

@[simp]
theorem CategoryTheory.Functor.op_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) :
∀ {X Y : Cᵒᵖ} (f : X Y), F.op.map f = (F.map f.unop).op

The opposite of a functor, i.e. considering a functor F : C ⥤ D as a functor Cᵒᵖ ⥤ Dᵒᵖ. In informal mathematics no distinction is made between these.

Equations
Instances For
@[simp]
theorem CategoryTheory.Functor.unop_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor Cᵒᵖ Dᵒᵖ) :
∀ {X Y : C} (f : X Y), F.unop.map f = (F.map f.op).unop

Given a functor F : Cᵒᵖ ⥤ Dᵒᵖ we can take the "unopposite" functor F : C ⥤ D. In informal mathematics no distinction is made between these.

Equations
  • F.unop = { obj := fun (X : C) => Opposite.unop (F.obj (Opposite.op X)), map := fun {X Y : C} (f : X Y) => (F.map f.op).unop, map_id := , map_comp := }

The isomorphism between F.op.unop and F.

Equations

The isomorphism between F.unop.op and F.

Equations
@[simp]
theorem CategoryTheory.Functor.opHom_map_app (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] :
∀ {X Y : (CategoryTheory.Functor C D)ᵒᵖ} (α : X Y) (X_1 : Cᵒᵖ), ((CategoryTheory.Functor.opHom C D).map α).app X_1 = (α.unop.app (Opposite.unop X_1)).op

Taking the opposite of a functor is functorial.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.opInv_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] :
∀ {X Y : CategoryTheory.Functor Cᵒᵖ Dᵒᵖ} (α : X Y), (CategoryTheory.Functor.opInv C D).map α = Quiver.Hom.op { app := fun (X_1 : C) => (α.app (Opposite.op X_1)).unop, naturality := }

Take the "unopposite" of a functor is functorial.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.leftOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C Dᵒᵖ) :
∀ {X Y : Cᵒᵖ} (f : X Y), F.leftOp.map f = (F.map f.unop).unop

Another variant of the opposite of functor, turning a functor C ⥤ Dᵒᵖ into a functor Cᵒᵖ ⥤ D. In informal mathematics no distinction is made.

Equations
Instances For
@[simp]
theorem CategoryTheory.Functor.rightOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor Cᵒᵖ D) :
∀ {X Y : C} (f : X Y), F.rightOp.map f = (F.map f.op).op

Another variant of the opposite of functor, turning a functor Cᵒᵖ ⥤ D into a functor C ⥤ Dᵒᵖ. In informal mathematics no distinction is made.

Equations
  • F.rightOp = { obj := fun (X : C) => Opposite.op (F.obj (Opposite.op X)), map := fun {X Y : C} (f : X Y) => (F.map f.op).op, map_id := , map_comp := }
Instances For
theorem CategoryTheory.Functor.rightOp_map_unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor Cᵒᵖ D} {X : C} {Y : C} (f : X Y) :
(F.rightOp.map f).unop = F.map f.op

If F is faithful then the right_op of F is also faithful.

Equations
  • =

If F is faithful then the left_op of F is also faithful.

Equations
  • =

The isomorphism between F.leftOp.rightOp and F.

Equations

The isomorphism between F.rightOp.leftOp and F.

Equations

Whenever possible, it is advisable to use the isomorphism rightOpLeftOpIso instead of this equality of functors.

The opposite of a natural transformation.

Equations

The "unopposite" of a natural transformation.

Equations

Given a natural transformation α : F.op ⟶ G.op, we can take the "unopposite" of each component obtaining a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F.unop ⟶ G.unop, we can take the opposite of each component obtaining a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F ⟶ G, for F G : C ⥤ Dᵒᵖ, taking unop of each component gives a natural transformation G.leftOp ⟶ F.leftOp.

Equations

Given a natural transformation α : F.leftOp ⟶ G.leftOp, for F G : C ⥤ Dᵒᵖ, taking op of each component gives a natural transformation G ⟶ F.

Equations

Given a natural transformation α : F ⟶ G, for F G : Cᵒᵖ ⥤ D, taking op of each component gives a natural transformation G.rightOp ⟶ F.rightOp.

Equations

Given a natural transformation α : F.rightOp ⟶ G.rightOp, for F G : Cᵒᵖ ⥤ D, taking unop of each component gives a natural transformation G ⟶ F.

Equations
@[simp]
theorem CategoryTheory.Iso.op_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
α.op.inv = α.inv.op
@[simp]
theorem CategoryTheory.Iso.op_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
α.op.hom = α.hom.op

The opposite isomorphism.

Equations
  • α.op = { hom := α.hom.op, inv := α.inv.op, hom_inv_id := , inv_hom_id := }
@[simp]
theorem CategoryTheory.Iso.unop_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.inv = f.inv.unop
@[simp]
theorem CategoryTheory.Iso.unop_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.hom = f.hom.unop

The isomorphism obtained from an isomorphism in the opposite category.

Equations
  • f.unop = { hom := f.hom.unop, inv := f.inv.unop, hom_inv_id := , inv_hom_id := }
@[simp]
theorem CategoryTheory.Iso.unop_op {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.op = f
@[simp]
theorem CategoryTheory.Iso.op_unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (f : X Y) :
f.op.unop = f

The natural isomorphism between opposite functors G.op ≅ F.op induced by a natural isomorphism between the original functors F ≅ G.

Equations

The natural isomorphism between functors G ≅ F induced by a natural isomorphism between the opposite functors F.op ≅ G.op.

Equations

The natural isomorphism between functors G.unop ≅ F.unop induced by a natural isomorphism between the original functors F ≅ G.

Equations
@[simp]
theorem CategoryTheory.Equivalence.op_functor {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (e : C D) :
e.op.functor = e.functor.op
@[simp]
theorem CategoryTheory.Equivalence.op_inverse {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (e : C D) :
e.op.inverse = e.inverse.op

An equivalence between categories gives an equivalence between the opposite categories.

Equations
  • One or more equations did not get rendered due to their size.

An equivalence between opposite categories gives an equivalence between the original categories.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]

The equivalence between arrows of the form A ⟶ B and B.unop ⟶ A.unop. Useful for building adjunctions. Note that this (definitionally) gives variants

def opEquiv' (A : C) (B : Cᵒᵖ) : (Opposite.op A ⟶ B) ≃ (B.unop ⟶ A) :=
  opEquiv _ _

def opEquiv'' (A : Cᵒᵖ) (B : C) : (A ⟶ Opposite.op B) ≃ (B ⟶ A.unop) :=
  opEquiv _ _

def opEquiv''' (A B : C) : (Opposite.op A ⟶ Opposite.op B) ≃ (B ⟶ A) :=
  opEquiv _ _
Equations

The equivalence between isomorphisms of the form A ≅ B and B.unop ≅ A.unop.

Note this is definitionally the same as the other three variants:

Equations

The equivalence of functor categories induced by op and unop.

Equations
  • One or more equations did not get rendered due to their size.

The equivalence of functor categories induced by leftOp and rightOp.

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
Equations
  • =
Equations
  • =