Documentation

Mathlib.CategoryTheory.Groupoid

Groupoids #

We define Groupoid as a typeclass extending Category, asserting that all morphisms have inverses.

The instance IsIso.ofGroupoid (f : X ⟶ Y) : IsIso f means that you can then write inv f to access the inverse of any morphism f.

Groupoid.isoEquivHom : (X ≅ Y) ≃ (X ⟶ Y) provides the equivalence between isomorphisms and morphisms in a groupoid.

We provide a (non-instance) constructor Groupoid.ofIsIso from an existing category with IsIso f for every f.

See also #

See also CategoryTheory.Core for the groupoid of isomorphisms in a category.

class CategoryTheory.Groupoid (obj : Type u) extends CategoryTheory.Category :
Type (max u (v + 1))

A Groupoid is a category such that all morphisms are isomorphisms.

Instances

f composed with inv f is the identity

@[reducible, inline]
abbrev CategoryTheory.LargeGroupoid (C : Type (u + 1)) :
Type (u + 1)

A LargeGroupoid is a groupoid where the objects live in Type (u+1) while the morphisms live in Type u.

Equations
@[reducible, inline]
abbrev CategoryTheory.SmallGroupoid (C : Type u) :
Type (u + 1)

A SmallGroupoid is a groupoid where the objects and morphisms live in the same universe.

Equations
@[instance 100]
Equations
  • =
@[simp]
theorem CategoryTheory.Groupoid.invEquiv_apply {C : Type u} [CategoryTheory.Groupoid C] {X : C} {Y : C} :
∀ (a : X Y), CategoryTheory.Groupoid.invEquiv a = CategoryTheory.Groupoid.inv a
@[simp]
theorem CategoryTheory.Groupoid.invEquiv_symm_apply {C : Type u} [CategoryTheory.Groupoid C] {X : C} {Y : C} :
∀ (a : Y X), CategoryTheory.Groupoid.invEquiv.symm a = CategoryTheory.Groupoid.inv a
def CategoryTheory.Groupoid.invEquiv {C : Type u} [CategoryTheory.Groupoid C] {X : C} {Y : C} :
(X Y) (Y X)

Groupoid.inv is involutive.

Equations
  • CategoryTheory.Groupoid.invEquiv = { toFun := CategoryTheory.Groupoid.inv, invFun := CategoryTheory.Groupoid.inv, left_inv := , right_inv := }
@[instance 100]
Equations
Equations
  • =
def CategoryTheory.Groupoid.isoEquivHom {C : Type u} [CategoryTheory.Groupoid C] (X : C) (Y : C) :
(X Y) (X Y)

In a groupoid, isomorphisms are equivalent to morphisms.

Equations
  • One or more equations did not get rendered due to their size.

The functor from a groupoid C to its opposite sending every morphism to its inverse.

Equations
noncomputable def CategoryTheory.Groupoid.ofIsIso {C : Type u} [CategoryTheory.Category.{v, u} C] (all_is_iso : ∀ {X Y : C} (f : X Y), CategoryTheory.IsIso f) :

A category where every morphism IsIso is a groupoid.

Equations

A category with a unique morphism between any two objects is a groupoid

Equations
instance CategoryTheory.groupoidPi {I : Type u} {J : IType u₂} [(i : I) → CategoryTheory.Groupoid (J i)] :
CategoryTheory.Groupoid ((i : I) → J i)
Equations
Equations