Documentation

Mathlib.Algebra.Group.Hom.CompTypeclasses

Propositional typeclasses on several monoid homs #

This file contains typeclasses used in the definition of equivariant maps, in the spirit what was initially developed by Frédéric Dupuis and Heather Macbeth for linear maps. However, we do not expect that all maps should be guessed automatically, as it happens for linear maps.

If φ, ψ… are monoid homs and M, N… are monoids, we add two instances:

Some basic lemmas are proved:

TODO :

class MonoidHom.CompTriple {M : Type u_1} {N : Type u_2} {P : Type u_3} [Monoid M] [Monoid N] [Monoid P] (φ : M →* N) (ψ : N →* P) (χ : outParam (M →* P)) :

Class of composing triples

  • comp_eq : ψ.comp φ = χ

    The maps form a commuting triangle

Instances
    @[simp]
    theorem MonoidHom.CompTriple.comp_eq {M : Type u_1} {N : Type u_2} {P : Type u_3} :
    ∀ {inst : Monoid M} {inst_1 : Monoid N} {inst_2 : Monoid P} {φ : M →* N} {ψ : N →* P} {χ : outParam (M →* P)} [self : φ.CompTriple ψ χ], ψ.comp φ = χ

    The maps form a commuting triangle

    class MonoidHom.CompTriple.IsId {M : Type u_2} [Monoid M] (σ : M →* M) :

    Class of Id maps

    Instances
      theorem MonoidHom.CompTriple.IsId.eq_id {M : Type u_2} :
      ∀ {inst : Monoid M} {σ : M →* M} [self : MonoidHom.CompTriple.IsId σ], σ = MonoidHom.id M
      Equations
      • =
      instance MonoidHom.CompTriple.instComp_id {N : Type u_5} {P : Type u_6} [Monoid N] [Monoid P] {φ : N →* N} [MonoidHom.CompTriple.IsId φ] {ψ : N →* P} :
      φ.CompTriple ψ ψ
      Equations
      • =
      instance MonoidHom.CompTriple.instId_comp {M : Type u_5} {N : Type u_6} [Monoid M] [Monoid N] {φ : M →* N} {ψ : N →* N} [MonoidHom.CompTriple.IsId ψ] :
      φ.CompTriple ψ φ
      Equations
      • =
      theorem MonoidHom.CompTriple.comp_inv {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {φ : M →* N} {ψ : N →* M} (h : Function.RightInverse φ ψ) {χ : M →* M} [MonoidHom.CompTriple.IsId χ] :
      φ.CompTriple ψ χ
      instance MonoidHom.CompTriple.instRootCompTriple {M : Type u_2} {N : Type u_3} {P : Type u_4} [Monoid M] [Monoid N] [Monoid P] {φ : M →* N} {ψ : N →* P} {χ : M →* P} [κ : φ.CompTriple ψ χ] :
      CompTriple φ ψ χ
      Equations
      • =
      theorem MonoidHom.CompTriple.comp {M : Type u_2} {N : Type u_3} {P : Type u_4} [Monoid M] [Monoid N] [Monoid P] {φ : M →* N} {ψ : N →* P} :
      φ.CompTriple ψ (ψ.comp φ)

      φ, ψ and ψ.comp φ form a MonoidHom.CompTriple

      (to be used with care, because no simplification is done)

      theorem MonoidHom.CompTriple.comp_apply {M : Type u_2} {N : Type u_3} {P : Type u_4} [Monoid M] [Monoid N] [Monoid P] {φ : M →* N} {ψ : N →* P} {χ : M →* P} (h : φ.CompTriple ψ χ) (x : M) :
      ψ (φ x) = χ x
      @[simp]
      theorem MonoidHom.CompTriple.comp_assoc {M : Type u_2} {N : Type u_3} {P : Type u_4} [Monoid M] [Monoid N] [Monoid P] {Q : Type u_5} [Monoid Q] {φ₁ : M →* N} {φ₂ : N →* P} {φ₁₂ : M →* P} (κ : φ₁.CompTriple φ₂ φ₁₂) {φ₃ : P →* Q} {φ₂₃ : N →* Q} (κ' : φ₂.CompTriple φ₃ φ₂₃) {φ₁₂₃ : M →* Q} :
      φ₁.CompTriple φ₂₃ φ₁₂₃ φ₁₂.CompTriple φ₃ φ₁₂₃