Documentation

Marginis.Vickers2019

Sketches for arithmetic universes #

STEVEN VICKERS

The article discusses pushouts. Here we construct a version of pushouts by hand.

def pushout {U : Type u_1} {V : Type u_2} {W : Type u_3} (f : UV) (g : UW) (hf : Function.Injective f) (hg : Function.Injective g) :
Setoid (V W)
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def ambient⅋ (V : Type u_1) (W : Type u_2) [Zero V] [Zero W] :
    Setoid (Fin 2 × V Fin 2 × W)

    A model for the linear logic ⅋ connective. This is only the ambient space though.

    Equations
    Instances For
      def ⅋' {V : Type u_1} {W : Type u_2} [Zero V] [Zero W] (𝓐 : Set V) (𝓑 : Set W) :

      The ⅋ for propositions A, B.

      Equations
      Instances For
        def opl {V : Type u_1} {W : Type u_2} [Zero V] [Zero W] (𝓐 : Set V) (𝓑 : Set W) :
        Equations
        Instances For
          instance instZeroSubtypeMemSubmodule_marginis {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (𝓐 : Submodule 𝕜 E) :
          Zero 𝓐
          Equations
          theorem ⅋_of_opl {V : Type u_1} {W : Type u_2} [Zero V] [Zero W] (𝓐 : Set V) (𝓑 : Set W) (C : Quotient (ambient⅋ V W)) :
          opl 𝓐 𝓑 C⅋' 𝓐 𝓑 C

          𝓐 ⊕ 𝓑 implies 𝓐 ⅋ 𝓑.