Documentation

Marginis.Veldman2022

Projective sets, intuitionistically #

by Veldman

Definition 29 gives two inductive conditions (i),(ii) for membership in a set CB. Condition (iii) states that all members of CB are given by (i) and (ii). Here we prove that an analogue of (iii) holds in Lean's inductive type theory, using the cases tactic.

inductive veldman :
Instances For
    theorem iii (x : veldman) :
    ∃ (y : veldman), x = y.i x = y.ii
    inductive veldman₀ (α : Type) (β : Type) :
    Instances For
      theorem iii₀ {α : Type} {β : Type} (x : veldman₀ α β) :
      (∃ (y : α), x = veldman₀.i y) ∃ (y : β), x = veldman₀.ii y
      theorem intcases (x : ) :
      x 0 1 x
      inductive my_type :
      Instances For
        structure royale_high :
        Instances For
          inductive bff_high :
          Instances For
            inductive bff_h :
            Instances For
              theorem bff_h_none (x : bff_h) :
              ∃ (y : bff_h), x = y.bff
              theorem bff_injective (x : bff_high) (y : bff_high) (h : x.bff = y.bff) :
              x = y
              theorem bff_iii (x : bff_high) :
              x = bff_high.foo ∃ (y : bff_high), x = y.bff