Documentation

Marginis.Veldman2022

Projective sets, intuitionistically #

Veldman

Definition 29 gives two inductive conditions (i),(ii) for membership in a set CB. Condition (iii) states that all members of CB are given by (i) and (ii). Here we prove that an analogue of (iii) holds in Lean's inductive type theory, using the cases tactic.

theorem iii (x : veldman) :
∃ (y : veldman), x = y.i x = y.ii
inductive veldman₀ (α : Type) (β : Type) :
theorem iii₀ {α : Type} {β : Type} (x : veldman₀ α β) :
(∃ (y : α), x = veldman₀.i y) ∃ (y : β), x = veldman₀.ii y
theorem intcases (x : ) :
x 0 1 x
inductive my_type :
structure royale_high :
inductive bff_h :
theorem bff_h_none (x : bff_h) :
∃ (y : bff_h), x = y.bff
theorem bff_injective (x : bff_high) (y : bff_high) (h : x.bff = y.bff) :
x = y
theorem bff_iii (x : bff_high) :
x = bff_high.foo ∃ (y : bff_high), x = y.bff