Documentation

Marginis.Hrbacek2020

On factoring of unlimited integers #

by KAREL HRBACEK

We prove a special case of Dickson's Conjecture as stated in the paper: the case where

n = gcd(a,b) > 1 implies n | f(k) = a+bk for all k, violating the main hypothesis of Dickson's conjecture.

See dickson_strong.

Dickson's Conjecture is trivial for ℓ = 0 and we do not need Hrbacek's assumption that ℓ ≥ 1.

def prod_f {ℓ : } (a : Fin ) (b : Fin ) :
Equations
Instances For
    theorem dickson_strong {ℓ : } (a : Fin ) (b : Fin ) (ha : ∀ (i : Fin ), (a i).gcd (b i) > 1 b i = 1) (hc : ¬n > 1, ∀ (k : ), n prod_f a b k) (i : Fin ) (n₀ : ) :
    nn₀, Nat.Prime (a i + b i * n)
    theorem dickson_gcd {ℓ : } (a : Fin ) (b : Fin ) (ha : ∀ (i : Fin ), (a i).gcd (b i) > 1) (hc : ¬n > 1, ∀ (k : ), n prod_f a b k) (i : Fin ) (n₀ : ) :
    nn₀, Nat.Prime (a i + b i * n)
    theorem gt_one (k : ) (hk₀ : k 0) (hk₁ : k 1) :
    k > 1
    theorem dvd_helper' {a : } {b : } (ha : b a) (h_b : b > 1) :
    a.gcd b > 1
    theorem dvd_helper {a : } {b : } (ha : b a) (hb : b 1) :
    a.gcd b > 1 b = 1
    theorem dickson_dvd {ℓ : } (a : Fin ) (b : Fin ) (hb : ∀ (i : Fin ), b i 1) (ha : ∀ (i : Fin ), b i a i) (hc : ¬n > 1, ∀ (k : ), n prod_f a b k) (i : Fin ) (n₀ : ) :
    nn₀, Nat.Prime (a i + b i * n)
    theorem dickson_linear {ℓ : } {a : Fin } {b : Fin } {hb : ∀ (i : Fin ), b i 1} (ha : ∀ (i : Fin ), a i = 0) (hc : ¬n > 1, ∀ (k : ), n prod_f a b k) (i : Fin ) (n₀ : ) :
    nn₀, Nat.Prime (a i + b i * n)