Documentation

Marginis.FranklinMcNicholl2020

Degrees of and lowness for isometric isomorphism #

Franklin and McNicholl

define a metric on a graph by: d_G(v₀,v₁) = 0 if v₀ = v₁ 1 if (v₀,v₁) ∈ E; 2 otherwise

They say this is "clearly" a metric. We prove this formally and generalize it, by replacing 1 and 2 by real numbers 0 < a ≤ 2b, b ≤ 2a (the fact that 0 < b follows but does not need to be mentioned).

noncomputable def franklinMcNicholl {U : Type} (G : SimpleGraph U) (a : ) (b : ) :
UU
Equations
Instances For
    theorem franklinMcNicholl_ultrametric {U : Type} (G : SimpleGraph U) (a : ) (h : 0 a) :
    let d := franklinMcNicholl G a a; ∀ (x y z : U), d x y max (d x z) (d y z)

    When a=b we do have an ultrametric.

    noncomputable instance franklinMcNichollMetric {U : Type} (G : SimpleGraph U) (a : ) (b : ) (h₀ : 0 < a) (h₁ : a b + b) (h₂ : b a + a) :
    Equations