Documentation

Marginis.Ehrlich2011

Conway names, the simplicity hierarchy and the surreal number tree #

PHILIP EHRLICH

A tree ⟨A,<ₛ⟩ is a partially ordered class such that for each x ∈ A, the class {y ∈ A : y <ₛ x} of predecessors of x, written ‘pr_A(x)’, is a set well ordered by <ₛ.

We prove that the usual ordering of ℕ is a tree in this sense.

def pr (x : ) :
Equations
Instances For
    instance instIsTrichotomousSubtypeNatLt_marginis (x : ) :
    IsTrichotomous { y : // y < x } fun (u v : { y : // y < x }) => u < v
    Equations
    • =
    instance instIsTransSubtypeNatLt_marginis (x : ) :
    IsTrans { y : // y < x } fun (u v : { y : // y < x }) => u < v
    Equations
    • =
    instance instIsWellFoundedSubtypeNatLt_marginis (x : ) :
    IsWellFounded { y : // y < x } fun (u v : { y : // y < x }) => u < v
    Equations
    • =
    instance ehrlich_tree (x : ) :
    IsWellOrder { y : // y < x } fun (u v : { y : // y < x }) => u < v
    Equations
    • =
    def branch (P : Prop) :
    Equations
    Instances For
      theorem branchℕ :
      branch fun (x : ) => True
      def pr' (x : List ) :
      Equations
      Instances For
        theorem le_refl₀ (a : List ) :
        a <+: a
        theorem le_trans₀ (a : List ) (b : List ) (c : List ) :
        a <+: bb <+: ca <+: c
        theorem prefix_antisymm (a : List ) (b : List ) (h : a <+: b) (h₀ : b <+: a) :
        a = b
        theorem lt_iff_le_not_le₀ (a : List ) (b : List ) :
        a <+: b a b a <+: b ¬b <+: a