Documentation

Marginis.DienerHendtlass2020

Differentiating Convex Functions Constructively #

Hannes Diener and Matthew Hendtlass

In the paper 'Differentiating Convex Functions Constructively' by Hannes Diener and Matthew Hendtlass, the increase in 'the approximate derivatives of f ' for convex functions f : [0, 1] → ℝ is proved in Lemma 3. Here we formalize the proof.

Note that the proof provided in the paper does not account for the case when y = x'. Because of this (and for effieciency) the proof was changed, but we attempt to keep the spirit of the proof.

Also note that the formalization uses f : ℝ → ℝ instead of f : ↑(Set.Icc 0 1) → ℝ because the ConvexOn in Mathlib would require that 'AddCommMonoid ↑(Set.Icc 0 1)'.

theorem abcdef (a : ) (b : ) (c : ) (d : ) (e : ) (f : ) :
c a - b + d + e - ff a - b - c + d + e
theorem Neighbors {x : } {z : } {y : } (f : ) (Con : ConvexOn (Set.Icc 0 1) f) (hx : x Set.Icc 0 1) (hz : z Set.Icc 0 1) (ha1 : x < y) (ha2 : y < z) :
(f y - f x) / (y - x) (f z - f y) / (z - y)
theorem Lemma_3 {x : } {y : } {x' : } {y' : } (f : ) (Con : ConvexOn (Set.Icc 0 1) f) (hx : x Set.Icc 0 1) (hy : y Set.Icc 0 1) (hx' : x' Set.Icc 0 1) (hy' : y' Set.Icc 0 1) (ha1 : x < y) (ha2 : y x') (ha3 : x' < y') :
(f y - f x) / (y - x) (f y' - f x') / (y' - x')