Documentation

Marginis.Ciraulo2025

Kuratowski’s problem in constructive Topology #

FRANCESCO CIRAULO

We proved lemma 2.2 using the following formal theorems theorem_1 through theorem_10.

axiom cl_1 {α : Type} [PartialOrder α] (c : αα) (x : α) :
x c x
axiom cl_2 {α : Type} (c : αα) (x : α) :
c (c x) = c x
axiom cl_3 {α : Type} [PartialOrder α] (c : αα) {x : α} {y : α} :
x yc x c y
axiom int_1 {α : Type} [PartialOrder α] (i : αα) (x : α) :
i x x
axiom int_2 {α : Type} (i : αα) (x : α) :
i (i x) = i x
axiom int_3 {α : Type} [PartialOrder α] (i : αα) {x : α} {y : α} :
x yi x i y
theorem lemma_1 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
i x i (c (i x))
theorem lemma_2 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
i (c (i x)) i (c x)
theorem lemma_3 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
i (c (i x)) c (i x)
theorem lemma_4 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
i (c x) c (i (c x))
theorem lemma_5 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
c (i x) c (i (c x))
theorem lemma_6 {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
c (i (c x)) c x
theorem lemma_7 {α : Type} [PartialOrder α] (i : αα) (x : α) :
i x id x
theorem lemma_8 {α : Type} [PartialOrder α] (c : αα) (x : α) :
id x c x
theorem lemma_A {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
i (c x) = i (c (i (c x)))
theorem lemma_B {α : Type} [PartialOrder α] (c : αα) (i : αα) (x : α) :
c (i x) = c (i (c (i x)))
theorem theorem_1 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), c (i (c x)) id x) ∀ (x : α), c (i (c x)) = i x
theorem theorem_2 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), id x c (i (c x))) ∀ (x : α), c x = c (i (c x))
theorem theorem_3 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
((∀ (x : α), i (c x) c (i x)) ∀ (x : α), c (i (c x)) = c (i x)) ((∀ (x : α), c (i (c x)) = c (i x)) ∀ (x : α), i (c x) = i (c (i x)))
theorem theorem_4 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), i (c x) id x) ∀ (x : α), i (c x) = i x
theorem theorem_5 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), id x i (c x)) ∀ (x : α), c x = i (c x)
theorem theorem_6 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
((∀ (x : α), c (i x) i (c x)) ∀ (x : α), c (i (c x)) = i (c x)) ((∀ (x : α), c (i (c x)) = i (c x)) ∀ (x : α), c (i x) = i (c (i x)))
theorem theorem_7 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), c (i x) id x) ∀ (x : α), c (i x) = i x
theorem theorem_8 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), id x c (i x)) ∀ (x : α), c x = c (i x)
theorem theorem_9 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), i (c (i x)) id x) ∀ (x : α), i (c (i x)) = i x
theorem theorem_10 {α : Type} [PartialOrder α] (c : αα) (i : αα) :
(∀ (x : α), id x i (c (i x))) ∀ (x : α), c x = i (c (i x))