Documentation

Lean.Data.AssocList

inductive Lean.AssocList (α : Type u) (β : Type v) :
Type (max u v)

List-like type to avoid extra level of indirection

Instances For
instance Lean.instInhabitedAssocList :
{a : Type u_1} → {a_1 : Type u_2} → Inhabited (Lean.AssocList a a_1)
Equations
  • Lean.instInhabitedAssocList = { default := Lean.AssocList.nil }
@[reducible, inline]
abbrev Lean.AssocList.empty {α : Type u} {β : Type v} :
Equations
  • Lean.AssocList.empty = Lean.AssocList.nil
Equations
  • Lean.AssocList.instEmptyCollection = { emptyCollection := Lean.AssocList.empty }
@[reducible, inline]
abbrev Lean.AssocList.insert {α : Type u} {β : Type v} (m : Lean.AssocList α β) (k : α) (v : β) :
Equations
def Lean.AssocList.isEmpty {α : Type u} {β : Type v} :
Equations
@[specialize #[]]
def Lean.AssocList.foldlM {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w} [Monad m] (f : δαβm δ) (init : δ) :
Lean.AssocList α βm δ
Equations
@[inline]
def Lean.AssocList.foldl {α : Type u} {β : Type v} {δ : Type w} (f : δαβδ) (init : δ) (as : Lean.AssocList α β) :
δ
Equations
def Lean.AssocList.toList {α : Type u} {β : Type v} (as : Lean.AssocList α β) :
List (α × β)
Equations
@[specialize #[]]
def Lean.AssocList.forM {α : Type u} {β : Type v} {m : Type w → Type w} [Monad m] (f : αβm PUnit) :
Lean.AssocList α βm PUnit
Equations
def Lean.AssocList.mapKey {α : Type u} {β : Type v} {δ : Type w} (f : αδ) :
Equations
def Lean.AssocList.mapVal {α : Type u} {β : Type v} {δ : Type w} (f : βδ) :
Equations
def Lean.AssocList.findEntry? {α : Type u} {β : Type v} [BEq α] (a : α) :
Lean.AssocList α βOption (α × β)
Equations
def Lean.AssocList.find? {α : Type u} {β : Type v} [BEq α] (a : α) :
Lean.AssocList α βOption β
Equations
def Lean.AssocList.contains {α : Type u} {β : Type v} [BEq α] (a : α) :
Equations
def Lean.AssocList.replace {α : Type u} {β : Type v} [BEq α] (a : α) (b : β) :
Equations
def Lean.AssocList.erase {α : Type u} {β : Type v} [BEq α] (a : α) :
Equations
def Lean.AssocList.any {α : Type u} {β : Type v} (p : αβBool) :
Equations
def Lean.AssocList.all {α : Type u} {β : Type v} (p : αβBool) :
Equations
@[inline]
def Lean.AssocList.forIn {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w'} [Monad m] (as : Lean.AssocList α β) (init : δ) (f : α × βδm (ForInStep δ)) :
m δ
Equations
@[specialize #[]]
def Lean.AssocList.forIn.loop {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w'} [Monad m] (f : α × βδm (ForInStep δ)) :
δLean.AssocList α βm δ
Equations
instance Lean.AssocList.instForInProd {α : Type u} {β : Type v} {m : Type w → Type w} :
ForIn m (Lean.AssocList α β) (α × β)
Equations
  • Lean.AssocList.instForInProd = { forIn := fun {β_1 : Type ?u.25} [Monad m] => Lean.AssocList.forIn }
def List.toAssocList' {α : Type u} {β : Type v} :
List (α × β)Lean.AssocList α β
Equations