Documentation

Mathlib.Topology.Connected.LocallyConnected

Locally connected topological spaces #

A topological space is locally connected if each neighborhood filter admits a basis of connected open sets. Local connectivity is equivalent to each point having a basis of connected (not necessarily open) sets --- but in a non-trivial way, so we choose this definition and prove the equivalence later in locallyConnectedSpace_iff_connected_basis.

A topological space is locally connected if each neighborhood filter admits a basis of connected open sets. Note that it is equivalent to each point having a basis of connected (non necessarily open) sets but in a non-trivial way, so we choose this definition and prove the equivalence later in locallyConnectedSpace_iff_connected_basis.

  • open_connected_basis : ∀ (x : α), (nhds x).HasBasis (fun (s : Set α) => IsOpen s x s IsConnected s) id

    Open connected neighborhoods form a basis of the neighborhoods filter.

Instances
    theorem locallyConnectedSpace_iff_hasBasis_isOpen_isConnected {α : Type u} [TopologicalSpace α] :
    LocallyConnectedSpace α ∀ (x : α), (nhds x).HasBasis (fun (s : Set α) => IsOpen s x s IsConnected s) id
    @[deprecated locallyConnectedSpace_iff_hasBasis_isOpen_isConnected]
    theorem locallyConnectedSpace_iff_open_connected_basis {α : Type u} [TopologicalSpace α] :
    LocallyConnectedSpace α ∀ (x : α), (nhds x).HasBasis (fun (s : Set α) => IsOpen s x s IsConnected s) id

    Alias of locallyConnectedSpace_iff_hasBasis_isOpen_isConnected.

    @[deprecated locallyConnectedSpace_iff_subsets_isOpen_isConnected]
    theorem locallyConnectedSpace_iff_open_connected_subsets {α : Type u} [TopologicalSpace α] :
    LocallyConnectedSpace α ∀ (x : α), Unhds x, VU, IsOpen V x V IsConnected V

    Alias of locallyConnectedSpace_iff_subsets_isOpen_isConnected.

    A space with discrete topology is a locally connected space.

    theorem locallyConnectedSpace_iff_connected_subsets {α : Type u} [TopologicalSpace α] :
    LocallyConnectedSpace α ∀ (x : α), Unhds x, Vnhds x, IsPreconnected V V U
    theorem locallyConnectedSpace_iff_connected_basis {α : Type u} [TopologicalSpace α] :
    LocallyConnectedSpace α ∀ (x : α), (nhds x).HasBasis (fun (s : Set α) => s nhds x IsPreconnected s) id
    theorem locallyConnectedSpace_of_connected_bases {α : Type u} [TopologicalSpace α] {ι : Type u_3} (b : αιSet α) (p : αιProp) (hbasis : ∀ (x : α), (nhds x).HasBasis (p x) (b x)) (hconnected : ∀ (x : α) (i : ι), p x iIsPreconnected (b x i)) :
    @[deprecated Topology.IsOpenEmbedding.locallyConnectedSpace]

    Alias of Topology.IsOpenEmbedding.locallyConnectedSpace.