Additional instances for ring
over PNat
#
This adds some instances which enable ring
to work on PNat
even though it is not a commutative
semiring, by lifting to Nat
.
Equations
- Mathlib.Tactic.Ring.instCSLiftPNatNat = { lift := PNat.val, inj := PNat.coe_injective }
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatOfNatHAdd
{n : ℕ}
:
Mathlib.Tactic.Ring.CSLiftVal (OfNat.ofNat (n + 1)) (n + 1)
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat
{n : ℕ}
{h : 0 < n}
:
Mathlib.Tactic.Ring.CSLiftVal (n.toPNat h) n
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatSuccPNatHAddOfNat
{n : ℕ}
:
Mathlib.Tactic.Ring.CSLiftVal n.succPNat (n + 1)
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat'HAddPredOfNat
{n : ℕ}
:
Mathlib.Tactic.Ring.CSLiftVal n.toPNat' (n.pred + 1)
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatDivExactHAddDivOfNat
{n k : ℕ+}
:
Mathlib.Tactic.Ring.CSLiftVal (n.divExact k) (n.div k + 1)
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatHAdd
{n : ℕ+}
{n' : ℕ}
{k : ℕ+}
{k' : ℕ}
[h1 : Mathlib.Tactic.Ring.CSLiftVal n n']
[h2 : Mathlib.Tactic.Ring.CSLiftVal k k']
:
Mathlib.Tactic.Ring.CSLiftVal (n + k) (n' + k')
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatHMul
{n : ℕ+}
{n' : ℕ}
{k : ℕ+}
{k' : ℕ}
[h1 : Mathlib.Tactic.Ring.CSLiftVal n n']
[h2 : Mathlib.Tactic.Ring.CSLiftVal k k']
:
Mathlib.Tactic.Ring.CSLiftVal (n * k) (n' * k')
theorem
Mathlib.Tactic.Ring.instCSLiftValPNatNatHPow
{n : ℕ+}
{n' k : ℕ}
[h1 : Mathlib.Tactic.Ring.CSLiftVal n n']
:
Mathlib.Tactic.Ring.CSLiftVal (n ^ k) (n' ^ k)