Documentation

Mathlib.Data.List.Perm.Subperm

List Sub-permutations #

This file develops theory about the List.Subperm relation.

Notation #

The notation <+~ is used for sub-permutations.

theorem List.subperm_iff_count {α : Type u_1} {l₁ l₂ : List α} [DecidableEq α] :
l₁.Subperm l₂ ∀ (a : α), List.count a l₁ List.count a l₂

See also List.subperm_ext_iff.

theorem List.subperm_iff {α : Type u_1} {l₁ l₂ : List α} :
l₁.Subperm l₂ ∃ (l : List α), l.Perm l₂ l₁.Sublist l
@[simp]
theorem List.subperm_singleton_iff {α : Type u_1} {l : List α} {a : α} :
l.Subperm [a] l = [] l = [a]
theorem List.subperm_cons_self {α : Type u_1} {l : List α} {a : α} :
l.Subperm (a :: l)
theorem List.subperm.cons {α : Type u_1} (a : α) {l₁ l₂ : List α} :
l₁.Subperm l₂(a :: l₁).Subperm (a :: l₂)

Alias of the reverse direction of List.subperm_cons.

theorem List.subperm.of_cons {α : Type u_1} (a : α) {l₁ l₂ : List α} :
(a :: l₁).Subperm (a :: l₂)l₁.Subperm l₂

Alias of the forward direction of List.subperm_cons.

theorem List.cons_subperm_of_mem {α : Type u_1} {a : α} {l₁ l₂ : List α} (d₁ : l₁.Nodup) (h₁ : ¬a l₁) (h₂ : a l₂) (s : l₁.Subperm l₂) :
(a :: l₁).Subperm l₂
theorem List.Nodup.subperm {α : Type u_1} {l₁ l₂ : List α} (d : l₁.Nodup) (H : l₁ l₂) :
l₁.Subperm l₂