Documentation

Mathlib.GroupTheory.Congruence.Opposite

Congruences on the opposite of a group #

This file defines the order isomorphism between the congruences on a group G and the congruences on the opposite group Gᵒᵖ.

def Con.op {M : Type u_1} [Mul M] (c : Con M) :

If c is a multiplicative congruence on M, then (a, b) ↦ c b.unop a.unop is a multiplicative congruence on Mᵐᵒᵖ

Equations
def AddCon.op {M : Type u_1} [Add M] (c : AddCon M) :

If c is an additive congruence on M, then (a, b) ↦ c b.unop a.unop is an additive congruence on Mᵃᵒᵖ

Equations
def Con.unop {M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) :
Con M

If c is a multiplicative congruence on Mᵐᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is a multiplicative congruence on M

Equations
def AddCon.unop {M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) :

If c is an additive congruence on Mᵃᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is an additive congruence on M

Equations
def Con.orderIsoOp {M : Type u_1} [Mul M] :

The multiplicative congruences on M bijects to the multiplicative congruences on Mᵐᵒᵖ

Equations
  • Con.orderIsoOp = { toFun := Con.op, invFun := Con.unop, left_inv := , right_inv := , map_rel_iff' := }

The additive congruences on M bijects to the additive congruences on Mᵃᵒᵖ

Equations
  • AddCon.orderIsoOp = { toFun := AddCon.op, invFun := AddCon.unop, left_inv := , right_inv := , map_rel_iff' := }
@[simp]
theorem Con.orderIsoOp_apply {M : Type u_1} [Mul M] (c : Con M) :
Con.orderIsoOp c = c.op
@[simp]
theorem Con.orderIsoOp_symm_apply {M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) :
(RelIso.symm Con.orderIsoOp) c = c.unop
@[simp]
theorem AddCon.orderIsoOp_symm_apply {M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) :
(RelIso.symm AddCon.orderIsoOp) c = c.unop
@[simp]
theorem AddCon.orderIsoOp_apply {M : Type u_1} [Add M] (c : AddCon M) :
AddCon.orderIsoOp c = c.op