Documentation

Mathlib.Algebra.Order.Group.Defs

Ordered groups #

This file defines bundled ordered groups and develops a few basic results.

Implementation details #

Unfortunately, the number of ' appended to lemmas in this file may differ between the multiplicative and the additive version of a lemma. The reason is that we did not want to change existing names in the library.

theorem OrderedAddCommGroup.add_le_add_left {α : Type u} [self : OrderedAddCommGroup α] (a : α) (b : α) :
a b∀ (c : α), c + a c + b

Addition is monotone in an ordered additive commutative group.

theorem OrderedCommGroup.mul_le_mul_left {α : Type u} [self : OrderedCommGroup α] (a : α) (b : α) :
a b∀ (c : α), c * a c * b

Multiplication is monotone in an ordered commutative group.

Equations
  • =
@[instance 100]
Equations
@[instance 100]
Equations

A choice-free shortcut instance.

A choice-free shortcut instance.

A choice-free shortcut instance.

A choice-free shortcut instance.

theorem OrderedCommGroup.mul_lt_mul_left' {α : Type u_1} [Mul α] [LT α] [MulLeftStrictMono α] {b : α} {c : α} (bc : b < c) (a : α) :
a * b < a * c

Alias of mul_lt_mul_left'.

theorem OrderedAddCommGroup.add_lt_add_left {α : Type u_1} [Add α] [LT α] [AddLeftStrictMono α] {b : α} {c : α} (bc : b < c) (a : α) :
a + b < a + c
theorem OrderedCommGroup.le_of_mul_le_mul_left {α : Type u_1} [Mul α] [LE α] [MulLeftReflectLE α] {a : α} {b : α} {c : α} (bc : a * b a * c) :
b c

Alias of le_of_mul_le_mul_left'.

theorem OrderedAddCommGroup.le_of_add_le_add_left {α : Type u_1} [Add α] [LE α] [AddLeftReflectLE α] {a : α} {b : α} {c : α} (bc : a + b a + c) :
b c
theorem OrderedCommGroup.lt_of_mul_lt_mul_left {α : Type u_1} [Mul α] [LT α] [MulLeftReflectLT α] {a : α} {b : α} {c : α} (bc : a * b < a * c) :
b < c

Alias of lt_of_mul_lt_mul_left'.

theorem OrderedAddCommGroup.lt_of_add_lt_add_left {α : Type u_1} [Add α] [LT α] [AddLeftReflectLT α] {a : α} {b : α} {c : α} (bc : a + b < a + c) :
b < c

Linearly ordered commutative groups #

theorem LinearOrderedCommGroup.mul_lt_mul_left' {α : Type u} [LinearOrderedCommGroup α] (a : α) (b : α) (h : a < b) (c : α) :
c * a < c * b
theorem LinearOrderedAddCommGroup.add_lt_add_left {α : Type u} [LinearOrderedAddCommGroup α] (a : α) (b : α) (h : a < b) (c : α) :
c + a < c + b
theorem eq_one_of_inv_eq' {α : Type u} [LinearOrderedCommGroup α] {a : α} (h : a⁻¹ = a) :
a = 1
theorem eq_zero_of_neg_eq {α : Type u} [LinearOrderedAddCommGroup α] {a : α} (h : -a = a) :
a = 0
theorem exists_one_lt' {α : Type u} [LinearOrderedCommGroup α] [Nontrivial α] :
∃ (a : α), 1 < a
theorem exists_zero_lt {α : Type u} [LinearOrderedAddCommGroup α] [Nontrivial α] :
∃ (a : α), 0 < a
@[instance 100]
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 100]
Equations
  • One or more equations did not get rendered due to their size.
@[instance 100]
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem inv_le_self_iff {α : Type u} [LinearOrderedCommGroup α] {a : α} :
a⁻¹ a 1 a
@[simp]
theorem neg_le_self_iff {α : Type u} [LinearOrderedAddCommGroup α] {a : α} :
-a a 0 a
@[simp]
theorem inv_lt_self_iff {α : Type u} [LinearOrderedCommGroup α] {a : α} :
a⁻¹ < a 1 < a
@[simp]
theorem neg_lt_self_iff {α : Type u} [LinearOrderedAddCommGroup α] {a : α} :
-a < a 0 < a
@[simp]
theorem le_inv_self_iff {α : Type u} [LinearOrderedCommGroup α] {a : α} :
a a⁻¹ a 1
@[simp]
theorem le_neg_self_iff {α : Type u} [LinearOrderedAddCommGroup α] {a : α} :
a -a a 0
@[simp]
theorem lt_inv_self_iff {α : Type u} [LinearOrderedCommGroup α] {a : α} :
a < a⁻¹ a < 1
@[simp]
theorem lt_neg_self_iff {α : Type u} [LinearOrderedAddCommGroup α] {a : α} :
a < -a a < 0
theorem inv_le_inv' {α : Type u} [OrderedCommGroup α] {a : α} {b : α} :
a bb⁻¹ a⁻¹
theorem neg_le_neg {α : Type u} [OrderedAddCommGroup α] {a : α} {b : α} :
a b-b -a
theorem inv_lt_inv' {α : Type u} [OrderedCommGroup α] {a : α} {b : α} :
a < bb⁻¹ < a⁻¹
theorem neg_lt_neg {α : Type u} [OrderedAddCommGroup α] {a : α} {b : α} :
a < b-b < -a
theorem inv_lt_one_of_one_lt {α : Type u} [OrderedCommGroup α] {a : α} :
1 < aa⁻¹ < 1
theorem neg_neg_of_pos {α : Type u} [OrderedAddCommGroup α] {a : α} :
0 < a-a < 0
theorem inv_le_one_of_one_le {α : Type u} [OrderedCommGroup α] {a : α} :
1 aa⁻¹ 1
theorem neg_nonpos_of_nonneg {α : Type u} [OrderedAddCommGroup α] {a : α} :
0 a-a 0
theorem one_le_inv_of_le_one {α : Type u} [OrderedCommGroup α] {a : α} :
a 11 a⁻¹
theorem neg_nonneg_of_nonpos {α : Type u} [OrderedAddCommGroup α] {a : α} :
a 00 -a