Documentation
Acmoi
.
Exercise3_3_4
Search
Google site search
return to top
source
Imports
Init
Mathlib.Tactic.Ring
Mathlib.Algebra.GCDMonoid.Basic
Mathlib.RingTheory.Int.Basic
Imported by
sat_eq'
sat_eq3
depth1
depth2
depth3
solve3
source
def
sat_eq'
(a :
ℤ
×
ℤ
)
(n :
ℤ
)
(x :
ℤ
×
ℤ
)
:
Prop
Equations
sat_eq'
a
n
x
=
(
a
.1
*
x
.1
+
a
.2
*
x
.2
=
n
)
Instances For
source
def
sat_eq3
(a :
ℤ
)
(b :
ℤ
)
(c :
ℤ
)
(n :
ℤ
)
(x :
ℤ
)
(y :
ℤ
)
(z :
ℤ
)
:
Prop
Equations
sat_eq3
a
b
c
n
x
y
z
=
(
a
*
x
+
b
*
y
+
c
*
z
=
n
)
Instances For
source
theorem
depth1
{a :
ℤ
}
{b :
ℤ
}
{x :
ℤ
}
{y :
ℤ
}
{k :
ℤ
}
{n :
ℤ
}
(hsat :
sat_eq'
(
a
,
b
)
n
(
x
,
y
)
)
:
sat_eq'
(
a
,
b
)
n
(
x
-
k
*
b
,
y
+
k
*
a
)
source
theorem
depth2
{a :
ℤ
}
{b :
ℤ
}
{n :
ℤ
}
(h :
gcd
a
b
=
1
)
:
∃ (
x
:
ℤ
) (
y
:
ℤ
),
sat_eq'
(
a
,
b
)
n
(
x
,
y
)
source
theorem
depth3
(a :
ℤ
)
(b :
ℤ
)
(n :
ℤ
)
(h :
gcd
a
b
=
1
)
:
∃ (
x
:
ℤ
) (
y
:
ℤ
),
∀ (
k
:
ℤ
),
sat_eq'
(
a
,
b
)
n
(
x
-
k
*
b
,
y
+
k
*
a
)
source
theorem
solve3
(a :
ℤ
)
(b :
ℤ
)
(c :
ℤ
)
(n :
ℤ
)
(h :
gcd
(
gcd
a
b
)
c
=
1
)
:
∃ (
x
:
ℤ
) (
y
:
ℤ
) (
z
:
ℤ
),
sat_eq3
a
b
c
n
x
y
z