Documentation

Acmoi.Exercise2_567

def occurs_in {α : Type} (y : List α) (w : List α) :
Equations
Instances For
    def nonnil_occurs_squared_in {α : Type} (y : List α) (w : List α) :
    Equations
    Instances For
      def pre_abstract_almost_square_free (a : Fin 2) (b : Fin 2) (w : List (Fin 2)) :
      Equations
      Instances For
        def abstract_almost_square_free (a : Fin 2) (b : Fin 2) :
        a bList (Fin 2)Prop

        This is only interesting if a ≠ b so maybe that should be baked in.

        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem cons_ne_nil' {a : Fin 2} {b : Fin 2} {c : Fin 2} :
            [a, b] [c]
            theorem eq_cons_ne_nil {a : Fin 2} {b : Fin 2} {c : Fin 2} {d : Fin 2} (hcd : [c, d] = [a] [c, d] = [b] [c, d] = [a, b]) (hdc : [d, c] = [a] [d, c] = [b] [d, c] = [a, b]) :
            a = b
            theorem generalized (w : List (Fin 2)) (a : Fin 2) (b : Fin 2) (hab : a b) (hsqf : abstract_almost_square_free a b hab w) :
            def overlapfree (w : List (Fin 2)) :
            Equations
            Instances For
              theorem cons_append_length {a : Fin 2} {b : Fin 2} {x : List (Fin 2)} {u : List (Fin 2)} {z : List (Fin 2)} :
              (x ++ (a :: b :: u ++ a :: b :: u) ++ z).length = x.length + u.length.succ.succ + u.length.succ.succ + z.length
              theorem square_length_ge_four {x : List (Fin 2)} {z : List (Fin 2)} {u : List (Fin 2)} {a : Fin 2} {b : Fin 2} :
              (x ++ (a :: b :: u ++ a :: b :: u) ++ z).length 4
              def ctrex :
              List (Fin 2)
              Equations
              Instances For
                theorem ctrex_ne {x : List (Fin 2)} {z : List (Fin 2)} {a : Fin 2} {b : Fin 2} :
                ctrex x ++ ([a, b] ++ [a, b]) ++ z