Documentation

Acmoi.Exercise2_4

structure labeled_digraph (α : Type) (σ : Type) :
Instances For
    def no_duplicate_edges {q : } {b : } (M : labeled_digraph (Fin b) (Fin q)) :
    Equations
    Instances For
      inductive walk_labeled_digraph {α : Type} {σ : Type} (M : labeled_digraph α σ) :
      σσList αType
      Instances For
        inductive unlabeled_walk_labeled_digraph {α : Type} {σ : Type} (M : labeled_digraph α σ) :
        σσType
        Instances For
          noncomputable def walk_of_walk_labeled_digraph {α : Type} {σ : Type} {M : labeled_digraph α σ} {u : σ} {w : σ} {x : List α} (wa : walk_labeled_digraph M u w x) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def E_N_bounded_by {b : } (x : List (Fin b)) (e : ) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def thewalk1 {b : } :
              let M := { edge := fun (x : Fin 1 × Fin 1 × Fin b.succ) => x.2.2 = 0 }; walk_labeled_digraph M 0 0 [0]
              Equations
              Instances For
                def thewalk2 {b : } :
                let M := { edge := fun (x : Fin 1 × Fin 1 × Fin b.succ) => x.2.2 = 0 }; walk_labeled_digraph M 0 0 [0, 0]
                Equations
                Instances For
                  theorem prod_eq_zero {b : } :
                  Finset.filter (fun (x : Fin 1 × Fin 1 × Fin b.succ) => x.2.2 = 0) Finset.univ = {(0, 0, 0)}
                  theorem E_N_one {b : } :
                  theorem E_N_two {b : } :